Certain bacteria have emerged as biological gene vectors with natural tumor specificity, capable of specifically delivering genes or gene products to the tumor environment when intravenously (i.v.) administered to rodent models. We show for the first time that oral administration of bacteria to mice resulted in their translocation from the gastrointestinal tract (GIT) with subsequent homing to and replication specifically in tumors. The commensal, nonpathogenic Bifidobacterium breve UCC2003 harboring a plasmid expressing lux fed to mice bearing subcutaneous (s.c.) tumors were readily detected specifically in tumors, by live whole-body imaging, at levels similar to i.v. administration. Reporter gene expression was visible for >2 weeks in tumors. Mice remained healthy throughout experiments. Cytokine analyses indicated a significant upregulation of interferon-gamma (IFN-gamma) in the GIT of bifidobacteria-fed mice, which is associated with increases in epithelial permeability. However, B. breve feeding did not increase systemic levels of other commensal bacteria. The presence of tumor was not necessary for translocation to systemic organs to occur. These findings indicate potential for safe and efficient gene-based treatment and/or detection of tumors via ingestion of nonpathogenic bacteria expressing therapeutic or reporter genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2911250PMC
http://dx.doi.org/10.1038/mt.2010.59DOI Listing

Publication Analysis

Top Keywords

tumors
6
orally administered
4
administered bifidobacteria
4
bifidobacteria vehicles
4
vehicles delivery
4
delivery agents
4
agents systemic
4
systemic tumors
4
bacteria
4
tumors bacteria
4

Similar Publications

Background: Cervical adenocarcinoma (ADC) is more aggressive compared to other types of cervical cancer (CC), such as squamous cell carcinoma (SCC). The tumor immune microenvironment (TIME) and tumor heterogeneity are recognized as pivotal factors in cancer progression and therapy. However, the disparities in TIME and heterogeneity between ADC and SCC are poorly understood.

View Article and Find Full Text PDF

Advancing Tumor Microenvironment Analysis: A Fluorescence Nanosystem for Caspase-1 Monitoring and Synergistic Therapy.

Anal Chem

March 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.

The lack of precise, real-time analytical tools for monitoring tumor microenvironment changes during treatment hinders advancements in integrated diagnostic and therapeutic platforms. Traditional caspase-3 monitoring strategies are limited by their inability to address drug resistance and newly discovered apoptotic pathways, leading to reduced accuracy and practicality. To overcome these limitations, we developed a fluorescence-based "Trojan horse" nanosystem, PFpR@CM, featuring high-sensitivity Caspase-1 detection, tumor-targeted delivery, and photothermal therapy.

View Article and Find Full Text PDF

Background: Tumor metastasis is one of the main causes of death in cancer patients; however, the mechanism controlling metastasis is unclear. The posttranscriptional regulation of metastasis-related genes mediated by AT-rich interactive domain-containing protein 4A (Arid4a), an RNA-binding protein (RBP), has not been elucidated.

Methods: Bioinformatic analysis, qRT-PCR, immunohistochemistry, and immunoblotting were employed to determine the expression of Arid4a in breast tumor tissues and its association with the survival of cancer patients.

View Article and Find Full Text PDF

Multifunctional Liposomes with Enhanced Stability for Imaging-Guided Cancer Chemodynamic and Photothermal Therapy.

ACS Biomater Sci Eng

March 2025

Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261000 P. R. China.

Improvements in tumor therapy require a combination of strategies where targeted treatment is critical. We developed a new versatile nanoplatform, MA@E, that generates high levels of reactive oxygen species (ROS) with effective photothermal conversions in the removal of tumors. Enhanced stability liposomes were employed as carriers to facilitate the uniform distribution and stable storage of encapsulated gold nanorods (AuNRs) and Mn-MIL-100 metal-organic frameworks, with efficient delivery of MA@E to the cytoplasm.

View Article and Find Full Text PDF

Manganese-based nanoenzymes: from catalytic chemistry to design principle and antitumor/antibacterial therapy.

Nanoscale

March 2025

Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, Guangdong, P. R. China.

Manganese (Mn)-based materials have been extensively investigated for a wide range of biomedical applications owing to their remarkable catalytic chemistry, magnetic resonance imaging (MRI) capacity, biodegradability, low toxicity, and good biosafety. In this review, we first elaborate on the catalytic principle of Mn-based nanoenzymes for antitumor and antibacterial therapy, followed by a comprehensive discussion of the interesting structural design engineering strategies used to achieve multi-dimensional Mn-based nanoarchitectures, such as zero-dimensional (0D) nanoparticles, 1D nanotubes, 2D nanosheets, 3D hollow porous Mn ball, and core-shell nanostructures. Moreover, the therapeutic applications of different Mn-based nanoenzymes, including manganese dioxide (MnO)-based nanoenzymes that can trigger catalytic reactions, Mn-doped metal nanoenzymes and Mn-coordinated nanoenzymes that promote hydroxyl/reactive oxygen species (ROS) generation, and MnO-based micro/nanorobots that can effectively penetrate tumor tissues, are critically reviewed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!