Effects of angiotensin II on renal dopamine metabolism: synthesis, release, catabolism and turnover.

Nephron Physiol

Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, INFIBIOC, CONICET, Buenos Aires, Argentina.

Published: August 2010

Background/aims: Dopamine (DA) uptake inhibition in the renal cortex, elicited by angiotensin II (ANG II), is mediated by AT(1) receptors and signals through the phospholipase C pathway and activation of protein kinase C and CaM-kinase II. By this indirect way, ANG II stimulates renal Na(+),K(+)-ATPase activity through DA intracellular reduction. In the present work, we continued to study different aspects of renal DA metabolism in DA-ANG II interaction, such as DA synthesis, release, catabolism and turnover.

Methods: ANG II effects on DA synthesis, release, catabolism and turnover were measured in samples from the outer renal cortex of Sprague-Dawley rats.

Results: ANG II reduced renal aromatic acid decarboxylate activity without affecting basal secretion of DA or its KCl-induced release. Moreover, ANG II enhanced monoamine oxidase activity without altering catechol-o-methyl transferase activity and increased DA turnover.

Conclusion: Current results as well as previous findings show that ANG II modifies DA metabolism in rat renal cortex by reducing DA uptake, decreasing DA synthesis enzyme activity and increasing monoamine oxidase activity, and DA turnover. Together, all these effects may reduce DA accumulation into renal cells and decrease its endogenous content and availability. This would prevent D1 receptor recruitment and stimulation, while diminishing DA inhibition of Na(+),K(+)-ATPase activity and stimulating sodium reabsorption.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000311522DOI Listing

Publication Analysis

Top Keywords

synthesis release
12
release catabolism
12
renal cortex
12
renal
8
catabolism turnover
8
na+k+-atpase activity
8
monoamine oxidase
8
oxidase activity
8
activity
7
ang
6

Similar Publications

Background/aim: Preclinical studies were undertaken to investigate whether eribulin's known cytotoxic antimitotic effects are characterized by immunogenic cell death (ICD) as assessed by three established ICD biomarkers: extracellular released ATP, released HMGB1 and cell surface calreticulin.

Materials And Methods: Using BT-549, Hs578T and MCF-7 breast cancer cell lines, antiproliferative IC's of eribulin, five other microtubule targeting agents (MTAs; ER-076349, vinblastine, vinorelbine, paclitaxel, docetaxel) and three DNA damaging agents (DDAs; doxorubicin, cisplatin, oxaliplatin) were determined.

Results: Treatment of cells with 10×IC concentrations of all drugs in serum-free media resulted in time-dependent induction of cytotoxicity over DMSO controls.

View Article and Find Full Text PDF

Identifying predictors of sodium-glucose cotransporter 2 inhibitor and glucagon-like peptide 1 receptor agonist use in hospital among adults with diabetes.

J Diabetes Complications

December 2024

Sinai Health System, Division of General Internal Medicine, Toronto, Ontario, Canada; Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario. Electronic address:

Aims: To identify factors associated with use of novel diabetes medications among patients hospitalized under general internal medicine.

Methods: We conducted a cohort study of patients with type 2 diabetes mellitus (T2DM) hospitalized in Ontario, Canada between 2015 and 2020. We evaluated the patient- and physician-level factors associated with sodium-glucose cotransporter 2 inhibitor (SGLT2) and glucagon-like peptide 1 receptor agonist (GLP1R) use using a multivariable logistic regression model.

View Article and Find Full Text PDF

Molecular basis of hemoglobin binding and heme removal in .

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095.

To successfully mount infections, nearly all bacterial pathogens must acquire iron, a key metal cofactor that primarily resides within human hemoglobin. causes the life-threatening respiratory disease diphtheria and captures hemoglobin for iron scavenging using the surface-displayed receptor HbpA. Here, we show using X-ray crystallography, NMR, and in situ binding measurements that selectively captures iron-loaded hemoglobin by partially ensconcing the heme molecules of its α subunits.

View Article and Find Full Text PDF

TMEM16A, a key calcium-activated chloride channel, is crucial for many physiological and pathological processes such as cancer, hypertension, and osteoporosis, etc. However, the regulatory mechanism of TMEM16A is poorly understood, limiting the discovery of effective modulators. Here, we unveil an allosteric gating mechanism by presenting a high-resolution cryo-EM structure of TMEM16A in complex with a channel inhibitor that we identified, Tamsulosin, which is resolved at 2.

View Article and Find Full Text PDF

Topological confinement by a membrane anchor suppresses phase separation into protein aggregates: Implications for prion diseases.

Proc Natl Acad Sci U S A

January 2025

Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany.

Protein misfolding and aggregation are a hallmark of various neurodegenerative disorders. However, the underlying mechanisms driving protein misfolding in the cellular context are incompletely understood. Here, we show that the two-dimensional confinement imposed by a membrane anchor stabilizes the native protein conformation and suppresses liquid-liquid phase separation (LLPS) and protein aggregation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!