PARP-1 is involved in multiple cellular processes, including transcription, DNA repair, and apoptosis. PARP-1 attaches ADP-ribose units to target proteins, including itself as a post-translational modification that can change the biochemical properties of target proteins and mediate recruitment of proteins to sites of poly(ADP-ribose) synthesis. Independent of its catalytic activity, PARP-1 binds to chromatin and promotes compaction affecting RNA polymerase II transcription. PARP-1 has a modular structure composed of six independent domains. Two homologous zinc fingers, Zn1 and Zn2, form the DNA-binding module. Zn1-Zn2 binding to DNA breaks triggers catalytic activity. Recently, we have identified a third zinc binding domain in PARP-1, the Zn3 domain, which is essential for DNA-dependent PARP-1 activity. The crystal structure of the Zn3 domain revealed a novel zinc-ribbon fold and a homodimeric Zn3 structure that formed in the crystal lattice. Structure-guided mutagenesis was used here to investigate the roles of these two features of the Zn3 domain. Our results indicate that the zinc-ribbon fold of the Zn3 domain mediates an interdomain contact crucial to assembly of the DNA-activated conformation of PARP-1. In contrast, residues located at the Zn3 dimer interface are not required for DNA-dependent activation but rather make important contributions to the chromatin compaction activity of PARP-1. Thus, the Zn3 domain has dual roles in regulating the functions of PARP-1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881810 | PMC |
http://dx.doi.org/10.1074/jbc.M110.105668 | DOI Listing |
FEBS J
September 2023
Department of Chemistry, The University of Western Ontario, London, Canada.
Human metallothioneins (MTs) are involved in binding the essential elements, Cu(I) and Zn(II), and the toxic element, Cd(II), in metal-thiolate clusters using 20 reduced cysteines. The brain-specific MT3 binds a mixture of Cu(I) and Zn(II) in vivo. Its metallation properties are critically important because of potential connections between Cu, Zn and neurodegenerative diseases.
View Article and Find Full Text PDFPoly(ADP-ribose)polymerase 1 (PARP1) is a key target for the treatment of cancer-related diseases, and plays an important role in biological processes such as DNA repair, regulating a variety of metabolic and signal transduction processes. Understanding the dynamic binding mechanisms between each domain of PARP1 and DNA is of great significance to deepen the understanding on the function of PARP1 and to facilitate the design of inhibitors. Herein, strategies such as classical molecular dynamics simulation, conformational analysis, binding free energy calculation and energy decomposition were used to shed light on the binding mechanisms of different DNA binding domains (DBDs, including ZnF1, ZnF2 and ZnF3) in PARP1 with DNA and on the influences of zinc ions on the binding process.
View Article and Find Full Text PDFLife Sci
January 2021
Department of Bioinformatics, Hazara University, Mansehra, Pakistan.
Aims: Protein tyrosine phosphatase (PTP-CPS4B) is a signaling enzyme that is essential for a wide range of cellular processes, like metabolism, proliferation, survival and motility. Studies suggest that PTPs are vital for the production of Wzy-dependent capsule in bacteria, making it a valuable target for the discovery of pneumonia associated anti-virulence antibacterial agents. Present study aims at identifying the potential drug candidates to be exploited in inhibiting the growth of Streptococcus pneumonia targeting PTP-CPS4B.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2019
Institut de pharmacolgie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
To achieve swift cell demise during apoptosis, caspases cleave essential proteins for cell survival and removal. In addition to the binding of preferred amino acid sequences to its substrate-binding pocket, caspase-7 also uses exosites to select specific substrates. 4 lysine residues (KKKK) located in the N-terminal domain of caspase-7 form such an exosite and promote the rapid proteolysis of the poly(ADP-ribose) polymerase 1 (PARP-1), but the mechanism of recognition remains mostly unknown.
View Article and Find Full Text PDFJ Biomol Struct Dyn
February 2018
d Campbell Family Cancer Research Institute, Ontario Cancer Institute , Princess Margaret Hospital, University Health Network, Toronto , Ontario M5G 2C4 , Canada.
The crystal structures of protein SA0856 from Staphylococcus aureus in its apo-form and in complex with a Zn-ion have been presented. The 152 amino acid protein consists of two similar domains with α + β topology. In both crystalline state and in solution, the protein forms a dimer with monomers related by a twofold pseudo-symmetry rotation axis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!