A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A new protocol to detect light elements in estuarine sediments by X-ray microanalysis (SEM/EDS). | LitMetric

A new protocol to detect light elements in estuarine sediments by X-ray microanalysis (SEM/EDS).

J Electron Microsc (Tokyo)

Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.

Published: February 2011

The analytical scanning electron microscope (SEM) has been used to determine the presence and distribution of atomic elements in mineralogy. However, the detection of light elements such as carbon is difficult to obtain with standard energy-dispersive X-ray spectrometry (EDS) and usual proceedings for SEM. This study proposes a new protocol to detect calcium carbonate by SEM/EDS using sediments from the Jaguaribe River estuary, NE Brazil, as a model. Handmade gold mounting discs (Au stubs) were used as sample support and samples were adhered with inexpensive glue (Loctite Super_Bonder) or directly disposed on the Au stubs. CaCO(3) and NaCl for chemical analysis were used as control and counterproof to the carbon adhesive tape. Control salts EDS analyses indicate that the method was efficient to detect light elements. Sediments obtained from different depths in the core sampled at the Jaguaribe River estuary consist of particles and aggregates with diverse morphology that covers a wide range of particle or aggregate size. Morphology and dimensions were similar for all core depths. Analysis of samples disposed on gold mounting disc without glue showed that sediment bulk particles usually presented small particles adhering on the surface. Clay minerals were predominant but silica was also often identified. Calcium was a trace element in a small number of sediment bulk particles. Biological and non-biological calcium carbonates, including nanoparticles, were identified in all core depths. X-ray emitted from Au stub did not interfere in the CaCO(3) EDS analysis. Calcium carbonate particles from sediments were identified using this novel approach.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jmicro/dfq013DOI Listing

Publication Analysis

Top Keywords

light elements
12
protocol detect
8
detect light
8
calcium carbonate
8
jaguaribe river
8
river estuary
8
gold mounting
8
core depths
8
sediment bulk
8
bulk particles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!