Aims: C-peptide is a product of pro-insulin cleavage. Numerous studies have demonstrated that C-peptide, although not influencing blood glucose control, may play a role in preventing and potentially reversing some of the chronic complications of type 1 diabetes. The aim of this paper was to present a novel function of C-peptide, focusing on its role in nitric oxide (NO) generation.

Main Methods: Murine macrophage Raw264.7 cells and primary peritoneal macrophages were incubated under control conditions, or with C-peptide. Expression level of iNOS and phosphorylation status of JAK2/STAT1 were analyzed by Western blot. Fluorometric NO assay kit was used to assess the concentration of nitrite in culture medium. Intracellular calcium concentration was measured with calcium indicator dyes, such as Fura-2 and Fluo-3 AM.

Key Findings: C-peptide increased the level of nitrites in murine macrophage Raw264.7 cells. The nitrites production induced by lipopolysaccharide (LPS) was further enhanced by co-treatment of C-peptide. This up-regulation of nitrites generation also correlated with the induction of inducible nitric oxide synthase (iNOS), a prominent marker of macrophage activation. In addition, C-peptide increased the intracellular concentration of calcium levels. Moreover, C-peptide-induced nitrites generation and increase in calcium was observed in freshly isolated primary peritoneal macrophages. In addition, C-peptide specifically affected the Janus activated kinase (JAK)/signal transducer and activated transcription (STAT) pathway. Finally, C-peptide-mediated nitrites generation and JAK2/STAT1 phosphorylation were not detected in the presence of the intracellular calcium chelator, BAPTA-AM.

Significance: These results suggest that C-peptide may elicit immune modulatory function via modulation of the calcium/JAK-STAT pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2010.03.022DOI Listing

Publication Analysis

Top Keywords

nitrites generation
16
murine macrophage
12
macrophage raw2647
12
raw2647 cells
12
c-peptide
10
nitric oxide
8
primary peritoneal
8
peritoneal macrophages
8
intracellular calcium
8
c-peptide increased
8

Similar Publications

Quenching peroxynitrite (a reactive oxidant species) is a vital process in biological systems and environmental chemistry as it maintains redox balance and mitigates damaging effects in living cells and the environment. In this study, we report a systematic analysis of the mechanism of transforming peroxynitrite into nitrate using diaryl selenide in water. Through quantum mechanical calculations, we investigate the dynamic isomerization of peroxynitrite in a homogeneous catalytic environment.

View Article and Find Full Text PDF

Comparison of using animal manure and sludge compost as biofilter filling material for off-gas control in aerobic composting.

Waste Manag

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:

Biofiltration is an important method for composting off-gas treatment. Compost-based materials are widely used as the filling media for biofilter. To expand the application of compost from different composting materials in off-gas control for organic waste aerobic composting, the NH removal efficiency, NO generation, and microbial communities of ammonia monooxygenase (amoA functional gene was selected) and nitrite reductase (nirS functional gene was selected) were investigated using the animal manure compost (AMC) and sludge compost (SC) as filling materials.

View Article and Find Full Text PDF

Arsenic (As) enrichment in groundwater stems from natural and hydrogeochemical factors, leading to geological contamination. Groundwater and surface water are interconnected, allowing As migration and surface water contamination. The As contamination poses health risks through contaminated water consumption.

View Article and Find Full Text PDF

The excessive accumulation of nitrate/nitrite (NO ) in surface and groundwater has severely disrupted the global nitrogen cycle and jeopardized public health. The electrochemical conversion of NO to ammonia (NH) not only holds promise for ecofriendly NO removal, but also provides a green alternative to the energy-intensive Haber-Bosch process for NH production. Recently, in addition to the electrocatalyst design explosion in this field, many innovative valorization systems based on NO -to-NH conversion have been developed for generating energy and expanding the range of value-added products.

View Article and Find Full Text PDF

[NO Generation, Key Influencing Factors, and Emission Reduction Strategies of AO Process in Municipal Wastewater Treatment Plant].

Huan Jing Ke Xue

January 2025

National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China.

To achieve non-carbon dioxide greenhouse gas emission reduction and control in municipal wastewater treatment plants (WWTPs), this study conducted one-year long-term monitoring of nitrous oxide (NO) in the anaerobic-anoxic-aerobic (AO) process of a large-scale municipal wastewater treatment plant in Beijing. The experimental results showed that the anaerobic and anoxic zones of the AO process could effectively remove dissolved NO contained in the return sludge, while the aerobic zone was the main area for NO generation and emission, and its generation pathway may have been dominated by ammonia oxidizing bacteria (AOB) denitrification. A significant difference was observed between winter and summer NO production, and the difference in the average NO release flux was up to 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!