Gene expression changes during cell differentiation are thought to be coordinated by histone modifications, but still little is known about the role of specific histone deacetylases (HDACs) in cell fate decisions in vivo. Here we demonstrate that the catalytic function of HDAC2 is required in adult, but not embryonic neurogenesis. While brain development and adult stem cell fate were normal upon conditional deletion of HDAC2 or in mice lacking the catalytic activity of HDAC2, neurons derived from both zones of adult neurogenesis die at a specific maturation stage. This phenotype is correlated with an increase in proliferation and the aberrant maintenance of proteins normally expressed only in progenitors, such as Sox2, also into some differentiating neurons, suggesting that HDAC2 is critically required to silence progenitor transcripts during neuronal differentiation of adult generated neurons. This cell-autonomous function of HDAC2 exclusively in adult neurogenesis reveals clear differences in the molecular mechanisms regulating neurogenesis during development and in adulthood.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1740925X10000049DOI Listing

Publication Analysis

Top Keywords

adult neurogenesis
12
cell fate
8
function hdac2
8
adult
6
neurogenesis
5
hdac2
5
specific role
4
role histone
4
histone deacetylase
4
deacetylase adult
4

Similar Publications

Traumatic brain injury (TBI) is one of the major causes of severe neurological disorders and long-term dysfunction in the nervous system. Besides inducing neurodegeneration, TBI alters stem cell activity and neurogenesis within primary neurogenic niches. However, the fate of dividing cells in other brain regions remains unclear despite offering potential targets for therapeutic intervention.

View Article and Find Full Text PDF

The adult human spinal cord harbors diverse populations of neural stem/progenitor cells (NSPCs) essential for neuroregeneration and central nervous system repair. While induced pluripotent stem cell (iPSC)-derived NSPCs offer significant therapeutic potential, understanding their molecular and functional alignment with bona fide spinal cord NSPCs is crucial for developing autologous cell therapies that enhance spinal cord regeneration and minimize immune rejection. In this study, we present the first direct transcriptomic and functional comparison of syngeneic adult human NSPC populations, including bona fide spinal cord NSPCs and iPSC-derived NSPCs regionalized to the spinal cord (iPSC-SC) and forebrain (iPSC-Br).

View Article and Find Full Text PDF

Natural variations of adolescent neurogenesis and anxiety predict the hierarchical status of adult inbred mice.

EMBO Rep

January 2025

Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland.

Hierarchy provides a survival advantage to social animals in challenging circumstances. In mice, social dominance is associated with trait anxiety which is regulated by adult hippocampal neurogenesis. Here, we test whether adolescent hippocampal neurogenesis may regulate social dominance behavior in adulthood.

View Article and Find Full Text PDF

Background: Impairments in behavioral pattern separation (BPS)-the ability to distinguish between similar contexts or experiences-contribute to memory interference and overgeneralization seen in many neuropsychiatric conditions, including depression, anxiety, posttraumatic stress disorder, dementia, and age-related cognitive decline. Although BPS relies on the dentate gyrus and is sensitive to changes in adult hippocampal neurogenesis, its significance as a pharmacological target has not been tested.

Methods: In this study, we applied a human neural stem cell high-throughput screening cascade to identify compounds that increase human neurogenesis.

View Article and Find Full Text PDF

Introduction: Sleep deprivation (SD), stemming from a myriad of aetiologies, is a prevalent health condition frequently overlooked. It typically impairs memory consolidation and synaptic plasticity, potentially through neuroinflammatory mechanisms and adenosinergic signalling. It is still unclear whether the adenosine A1 receptor (A1R) modulates SD-induced neurological deficits in the hippocampus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!