Background: In the flowering plants, many polyploid species complexes display evolutionary radiation. This could be facilitated by gene flow between otherwise separate evolutionary lineages in contact zones. Achillea collina is a widespread tetraploid species within the Achillea millefolium polyploid complex (Asteraceae-Anthemideae). It is morphologically intermediate between the relic diploids, A. setacea-2x in xeric and A. asplenifolia-2x in humid habitats, and often grows in close contact with either of them. By analyzing DNA sequences of two single-copy nuclear genes and the genomic AFLP data, we assess the allopolyploid origin of A. collina-4x from ancestors corresponding to A. setacea-2x and A. asplenifolia-2x, and the ongoing backcross introgression between these diploid progenitor and tetraploid progeny lineages.
Results: In both the ncpGS and the PgiC gene tree, haplotype sequences of the diploid A. setacea-2x and A. asplenifolia-2x group into two clades corresponding to the two species, though lineage sorting seems incomplete for the PgiC gene. In contrast, A. collina-4x and its suspected backcross plants show homeologous gene copies: sequences from the same tetraploid individual plant are placed in both diploid clades. Semi-congruent splits of an AFLP Neighbor Net link not only A. collina-4x to both diploid species, but some 4x individuals in a polymorphic population with mixed ploidy levels to A. setacea-2x on one hand and to A. collina-4x on the other, indicating allopolyploid speciation as well as hybridization across ploidal levels.
Conclusions: The findings of this study clearly demonstrate the hybrid origin of Achillea collina-4x, the ongoing backcrossing between the diploid progenitor and their tetraploid progeny lineages. Such repeated hybridizations are likely the cause of the great genetic and phenotypic variation and ecological differentiation of the polyploid taxa in Achillea millefolium agg.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2873412 | PMC |
http://dx.doi.org/10.1186/1471-2148-10-100 | DOI Listing |
Front Plant Sci
November 2024
College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China.
The photosystem II (PSII) Subunit P (PsbP) protein is a component of its oxygen-evolving complex, which can oxidize water to produce oxygen using light energy and is critical to the core components and stability of PSII. Using the whole-genome information, the genes of 10 plant species were comprehensively identified. The expression patterns of wheat s under f.
View Article and Find Full Text PDFMol Biol Evol
November 2024
Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China.
Plant Dis
October 2024
ICRISAT, Patancheru, Telangana, India;
Cotton leaf curl disease (CLCuD), caused by the whitefly transmitted geminivirus complex (Cotton leaf curl virus - CLCuV and their satellite molecules), is a serious threat to successful upland cotton production in northwest India, Pakistan, and China. The disease causes significant losses in fibre yield and the quality of cotton. Owing to the regular emergence of resistance breaking strains of CLCuV, all the previously available CLCuD resistant germplasms of upland cotton have become compromised and none of the extant upland cotton cultivars is resistant to this disease.
View Article and Find Full Text PDFGenes (Basel)
August 2024
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
Polyploidy, a prevalent event in plant evolution, drives phenotypic diversification and speciation. While transcriptional changes and regulation in polyploids have been extensively studied, the translational level impact remains largely unexplored. To address this gap, we conducted a comparative transcriptomic and translatomic analysis of cotton leaves from allopolyploid species (AD) and (AD) relative to their model A-genome and D-genome diploid progenitors.
View Article and Find Full Text PDFPlant Divers
July 2024
State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!