Dissociative electron attachment to pentaerythritol tetranitrate: significant fragmentation near 0 eV.

J Chem Phys

Institut für Ionenphysik and Angewandte Physik and Center of Molecular Biosciences Innsbruck, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.

Published: April 2010

Gas phase dissociative electron attachment (DEA) measurements to pentaerythritol tetranitrate (PETN) are performed in a crossed electron-molecular beam experiment at high-energy resolution and high sensitivity. DEA is operative at very low energies close to approximately 0 eV showing unique features corresponding to a variety of fragment anions being formed. There is no evidence of the parent anion formation. The fragmentation yields are also observed for higher electron energies and are operative via several resonant features in the range of 0-12 eV. In contrast to nitroaromatic compounds, PETN decays more rapidly upon electron attachment and preferentially low-mass anions are formed. The dominant fragment ion formed through DEA is assigned to the nitrogen trioxide NO(3)(-) and represents about 80% of the total anion yield. Further intense ion signals are due to NO(2)(-) (11%) and O(-) (2.5%). The significant instability of PETN after attachment of an electron with virtually no kinetic energy confers a highly explosive nature to this compound.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3386386DOI Listing

Publication Analysis

Top Keywords

electron attachment
12
dissociative electron
8
pentaerythritol tetranitrate
8
anions formed
8
attachment
4
attachment pentaerythritol
4
tetranitrate fragmentation
4
fragmentation gas
4
gas phase
4
phase dissociative
4

Similar Publications

Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.

View Article and Find Full Text PDF

A new Donor-Acceptor type pyrazinacene derivative (1) featuring strong ICT was synthesized by linking electron-donating triphenylamine (TPA) and electron-accepting CN groups via a pyrazinacene core. The compound exhibits a dramatic color change from greenish blue to red-violet upon selective recognition of naphthalene (3) to form a 1:1 co-crystal (1•3). This color change is induced by intermolecular CT between pyrazinacene and naphthalene's aromatic moieties, driven by π-hole···π interactions.

View Article and Find Full Text PDF

Microscopic Analysis of Temperature Effects on Surface Colonization and Biofilm Morphology of .

Foods

January 2025

U.S. Meat Animal Research Center, Agriculture Research Service (ARS), U.S. Department of Agriculture (USDA), Clay Center, NE 68933, USA.

represents a diverse group of pathogens commonly associated with food contamination including red meat. Even though pre- and post-harvest cleaning and sanitization procedures are widely implemented at meat processing plants to mitigate the hazard, cells may escape the process by colonizing, on contact, surfaces in the form of a biofilm that functions as an aggregated microbial community to facilitate mutual protection, antimicrobial resistance, proliferation and dissemination. Biofilm development is a complex process that can be affected by a variety of factors including environmental temperature.

View Article and Find Full Text PDF

The epithelial and mesenchymal features of colorectal adenocarcinoma (CRAC) cell lines were compared in two-dimensional (2D) and three-dimensional (3D) cultures. In 2D cultures, the three CRAC cell lines exhibited epithelial characteristics with high E-cadherin and low vimentin levels, whereas two exhibited mesenchymal traits with opposite expression patterns. In 3D cultures using low-attachment plates, mesenchymal cells from 2D cultures showed reduced vimentin mRNA levels.

View Article and Find Full Text PDF

Background: Noroviruses, which cause epidemic acute gastroenteritis, and parasites, which lead to malaria, are two infectious pathogens that pose threats to public health. The protruding (P) domain of norovirus VP1 and the αTSR domain of the circumsporozoite protein (CSP) of sporozoite are the glycan receptor-binding domains of the two pathogens for host cell attachment, making them excellent targets for vaccine development. Modified norovirus P domains self-assemble into a 24-meric octahedral P nanoparticle (P NP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!