We study the catalyst-free growth of InP nanowires using selective-area metalorganic vapor phase epitaxy (SA-MOVPE) and show that they undergo transition of crystal structures depending on the growth conditions. InP nanowires were grown on InP substrates where the mask for the template of the growth was defined. The nanowires were grown only in the opening region of the mask. It was found that uniform array of InP nanowires with hexagonal cross section and with negligible tapering were grown under two distinctive growth conditions. The nanowires grown in two different growth conditions were found to exhibit different crystal structures. It was also found that the orientation and size of hexagon were different, suggesting that the difference of the growth behavior. A model for the transition of crystal structure is presented based on the atomic arrangements and termination of InP surfaces. Photoluminescence measurement revealed that the transition took place for nanowires with diameters up to 1 microm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl1000407 | DOI Listing |
Adv Sci (Weinh)
December 2024
College of Photonics, National Yang Ming Chiao Tung University, 301 Gaofa 3rd Road, Tainan, 71150, Taiwan.
Nanoscale light sources are demanded vigorously due to rapid development in photonic integrated circuits (PICs). III-V semiconductor nanowire (NW) lasers have manifested themselves as indispensable components in this field, associated with their extremely compact footprint and ultra-high optical gain within the 1D cavity. In this study, the carrier concentrations of indium phosphide (InP) NWs are actively controlled to modify their emissive properties at room temperature.
View Article and Find Full Text PDFACS Nano
December 2024
University Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France.
This article describes an approach to making highly stable copper nanowire networks on any type of substrates. These nanostructured materials are highly sought after for, among other applications, the development of next-generation flexible electronics. Their high susceptibility to oxidation in air currently limits their use in the real world.
View Article and Find Full Text PDFNanotechnology
December 2024
Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, Box 118, 22100 Lund, Sweden.
Nanowire (NW) optoelectronic and electrical devices offer unique advantages over bulk materials but are generally made by contacting entire NW arrays in parallel. In contrast, ultra-high-resolution displays and photodetectors require electrical connections to individual NWs inside an array. Here, we demonstrate a scheme for fabricating such single NW vertical devices by contacting individual NWs within a dense NW array.
View Article and Find Full Text PDFNano Lett
November 2024
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Josephson junctions are typically characterized by a single phase difference across two superconductors. This conventional two-terminal Josephson junction can be generalized to a multiterminal device where the Josephson energy contains terms with contributions from multiple independent phase variables. Such multiterminal Josephson junctions (MTJJs) are being considered as platforms for engineering effective Hamiltonians with nontrivial topologies, such as Weyl crossings and higher-order Chern numbers.
View Article and Find Full Text PDFNano Lett
October 2024
Department of Applied Physics, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm 10691, Sweden.
Surface acoustic waves are a powerful tool for controlling quantum systems, including quantum dots (QDs), where the oscillating strain field can modulate the emission wavelengths. We integrate InAsP/InP nanowire QDs onto a thin-film lithium niobate platform and embed them within SiN-loaded waveguides. We achieve a 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!