[Soil microbial properties under different vegetation types in Loess hilly region].

Ying Yong Sheng Tai Xue Bao

State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Published: January 2010

By using fumigation-extract (FE) method and Biolog Ecoplate, this paper investigated the microbial biomass and diversity in 0-20 cm soil layer under five vegetation types, including artificial woodland, shrubland, cropland, abandoned farmland, and natural grassland, in Dingxi of Gansu Province. In the meanwhile, the relationships between soil microbes and soil nutrients were studied by path analysis, and the five typical vegetation types were evaluated from the aspect of soil microbes. Relative to cropland, "grain for green" project played a key role in improving soil microbial resources. Microbial biomass carbon was the highest in ridge grassland, abandoned farmland, and pine woodland, followed by in Caragana korshinskii land, Medicago sativa land, restored land, and roadside land, and in wheat field and potato field. Microbial biomass nitrogen was the highest in ridge land, abandoned farmland, Pinus tabulaeformis woodland, Caragana korshinskii land, and Medicago sativa land, followed by in restored land and roadside land, and in wheat field and potato field. Caragana korshinskii land and Medicago sativa land, due to the existence of N-fixing rhizobium, had the highest ratio of soil microbial biomass nitrogen to soil total nitrogen. Owing to the continual biomass loss and rare feedback, cropland had the lowest quantity and activity of soil microbes. Through planting trees, shrubs and grasses or through fallowing, soil microbial biomass and activity were recovered, and the effect was increased with time. In 20-year old Caragana korshinskii land, the quantity and activity of soil microbes were similar to those in 50-year old Pinus tabulaeformis woodland, and the microbial community catabolic activity and soil nutrient use efficiency were higher. Considering the features of soil microbes under test vegetation types, Caragana korshinskii would be a good choice for local vegetation restoration.

Download full-text PDF

Source

Publication Analysis

Top Keywords

microbial biomass
20
soil microbes
20
caragana korshinskii
20
vegetation types
16
korshinskii land
16
soil
12
abandoned farmland
12
soil microbial
12
land
12
land medicago
12

Similar Publications

The influence of arbuscular mycorrhizal fungi (AMF) inoculation on the growth and physiology of Phaseolus vulgaris L. and Zea mays L. in the Brazilian tropical seasonal dry forest is not well known.

View Article and Find Full Text PDF

Upcycling of Enzymatically Recovered Amino Acids from Textile Waste Blends: Approaches for Production of Valuable Second-Generation Bioproducts.

ACS Sustain Resour Manag

January 2025

Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria.

Tremendous quantities of textile waste generated and primarily landfilled annually represent a huge risk of contaminating the environment, together with loss of valuable resources. Especially, blended fabrics further pose a challenge for recycling and valorization strategies, while enzymatic hydrolysis offers a highly specific and environmentally friendly solution. In this study, we demonstrate that proteases specifically hydrolyze the wool components in blends with polyester, allowing recovery of pure polyester fibers as well as amino acids and peptides as platform molecules for further valorization.

View Article and Find Full Text PDF

Reductive acetogenesis is a dominant process in the ruminant hindgut.

Microbiome

January 2025

Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.

Background: The microbes residing in ruminant gastrointestinal tracts play a crucial role in converting plant biomass to volatile fatty acids, which serve as the primary energy source for ruminants. This gastrointestinal tract comprises a foregut (rumen) and hindgut (cecum and colon), which differ in structures and functions, particularly with respect to feed digestion and fermentation. While the rumen microbiome has been extensively studied, the cecal microbiome remains much less investigated and understood, especially concerning the assembling microbial communities and overriding pathways of hydrogen metabolism.

View Article and Find Full Text PDF

Tibetan barley (Hordeum vulgare) accounts for over 70% of the total food production in the Tibetan Plateau. However, continuous cropping of Tibetan barley causes soil degradation, reduces soil quality and causes yield decline. Here we explore the benefits of crop rotation with wheat and rape to improve crop yield and soil quality.

View Article and Find Full Text PDF

Enhanced methanol-xylose co-utilization strategy in Komagataella phaffii.

J Biotechnol

January 2025

School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China. Electronic address:

Bio-manufacturing based on non-food carbon sources is conducive to alleviating the global food crisis and greenhouse effect. However, the mechanism of the utilization of methanol and xylose in Komagataella phaffii based on endogenous metabolic pathways has not been fully explored. In this study, transcriptomics revealed a positive correlation between methanol metabolic efficiency and the transcription level of genes related to xylose metabolism and phosphate metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!