Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Based on Hyperion hyperspectral image data, the image-derived shifting sand, false-Gobi spectra, and field-measured sparse vegetation spectra were taken as endmembers, and the sparse vegetation coverage (< 40%) in Minqin oasis-desert transitional zone of Gansu Province was estimated by using fully constrained linear spectral mixture model (LSMM) and non-constrained LSMM, respectively. The results showed that the sparse vegetation fraction based on fully constrained LSMM described the actual sparse vegetation distribution. The differences between sparse vegetation fraction and field-measured vegetation coverage were less than 5% for all samples, and the RMSE was 3.0681. However, the sparse vegetation fraction based on non-constrained LSMM was lower than the field-measured vegetation coverage obviously, and the correlation between them was poor, with a low R2 of 0.5855. Compared with McGwire's corresponding research, the sparse vegetation coverage estimation in this study was more accurate and reliable, having expansive prospect for application in the future.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!