This study presents a new, simple, and low-cost technique to fabricate a nanocluster silicon (NCSi) surface on planar silicon using a micro-scale direct current (DC) discharge under ambient conditions. The method requires no masks, chemicals, vacuum environment, or laser, but only a high-voltage supply. The NCSi surfaces, characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy, consist of oxidized silicon nanoclusters 50-200 nm in diameter, likely formed by melting due to high temperatures in the discharge. The minimum size of the NCSi spot is determined by the size of the discharge tip (approximately 90 microm). Arbitrary NCSi areas can be produced on a silicon wafer by moving the discharge needle on the surface with the help of a computer-controlled xyz stage. NCSi surfaces can also be formed on three-dimensional (3D) surfaces, as demonstrated with silicon micropillars. NCSi surfaces can be used, for example, in various analytical applications. In this study, we demonstrate their use as sample plates in the analysis of drugs and peptides with desorption/ionization on silicon-mass spectrometry (DIOS-MS).

Download full-text PDF

Source
http://dx.doi.org/10.1039/b927181cDOI Listing

Publication Analysis

Top Keywords

ncsi surfaces
12
nanocluster silicon
8
desorption/ionization silicon-mass
8
silicon-mass spectrometry
8
silicon
6
ncsi
6
discharge
5
fabrication nanocluster
4
silicon surface
4
surface electric
4

Similar Publications

Doped nanocrystalline silicon (nc-Si:H) thin films offer improved carrier transport characteristics and reduced parasitic absorption compared to amorphous silicon (a-Si:H) films for silicon heterojunction (SHJ) solar cell application. In this article, we review the growth conditions of nc-Si:H thin films as the carrier-selective layers for SHJ solar cells. Surface and growth zone models are analysed at different stages of incubation, nucleation, and growth of the silicon nanocrystallites within the hydrogenated amorphous silicon matrix.

View Article and Find Full Text PDF

The nanocomposites of activated-carbon-decorated silicon nanocrystals (ACAC) were synchronously derived in a single step from biomass rice husks, through the simple route of the calcination method together with the magnesiothermic reduction process. The final product, ACAC, exhibited an aggregated structure of activated-carbon-encapsulated nanocrystalline silicon spheres, and reveals a high specific surface area (498.5 m/g).

View Article and Find Full Text PDF

Recent topics of application studies on porous silicon (PS) are reviewed here with a focus on the emissive properties of visible light, quasiballistic hot electrons, and acoustic wave. By exposing PS in solvents to pulse laser, size-controlled nc-Si dot colloids can be formed through fragmentation of the PS layer with a considerably higher yield than the conventional techniques such as laser ablation of bulk silicon and sol-gel precursor process. Fabricated colloidal samples show strong visible photoluminescence (~40% in quantum efficiency in the red band).

View Article and Find Full Text PDF

We propose a rapid, one-pot method to generate photoluminescent (PL) mesoporous silicon nanoparticles (PSiNPs). Typically, mesoporous silicon (meso-PSi) films, obtained by electrochemical etching of monocrystalline silicon substrates, do not display strong PL because the silicon nanocrystals (nc-Si) in the skeleton are generally too large to display quantum confinement effects. Here we describe an improved approach to form photoluminescent PSiNPs from meso-PSi by partial oxidation in aqueous sodium borate (borax) solutions.

View Article and Find Full Text PDF

Improved Battery Performance of Nanocrystalline Si Anodes Utilized by Radio Frequency (RF) Sputtered Multifunctional Amorphous Si Coating Layers.

ACS Appl Mater Interfaces

January 2018

Advanced Functional Thin Films Department, Surface Technology Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, Republic of Korea.

Despite the high theoretical specific capacity of Si, commercial Li-ion batteries (LIBs) based on Si are still not feasible because of unsatisfactory cycling stability. Herein, amorphous Si (a-Si)-coated nanocrystalline Si (nc-Si) formed by versatile radio frequency (RF) sputtering systems is proposed as a promising anode material for LIBs. Compared to uncoated nc-Si (retention of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!