Background: Cytoplasmic pH homeostasis in Escherichia coli includes numerous mechanisms involving pH-dependent catabolism and ion fluxes. An important contributor is transmembrane K+ flux, but the actual basis of K+ compensation for pH stress remains unclear. Osmoprotection could mediate the pH protection afforded by K+ and other osmolytes.
Methods And Principal Findings: The cytoplasmic pH of E. coli K-12 strains was measured by GFPmut3 fluorimetry. The wild-type strain Frag1 was exposed to rapid external acidification by HCl addition. Recovery of cytoplasmic pH was enhanced equally by supplementation with NaCl, KCl, proline, or sucrose. A triple mutant strain TK2420 defective for the Kdp, Trk and Kup K+ uptake systems requires exogenous K+ for steady-state pH homeostasis and for recovery from sudden acid shift. The K+ requirement however was partly compensated by supplementation with NaCl, choline chloride, proline, or sucrose. Thus, the K+ requirement was mediated in part by osmolarity, possibly by relieving osmotic stress which interacts with pH stress. The rapid addition of KCl to strain TK2420 suspended at external pH 5.6 caused a transient decrease in cytoplasmic pH, followed by slow recovery to an elevated steady-state pH. In the presence of 150 mM KCl, however, rapid addition of another 150 mM KCl caused a transient increase in cytoplasmic pH. These transient effects may arise from secondary K+ fluxes occurring through other transport processes in the TK2420 strain.
Conclusions: Diverse osmolytes including NaCl, KCl, proline, or sucrose contribute to cytoplasmic pH homeostasis in E. coli, and increase the recovery from rapid acid shift. Osmolytes other than K+ restore partial pH homeostasis in a strain deleted for K+ transport.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851621 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0010078 | PLOS |
Front Plant Sci
December 2024
Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
Drought, a major consequence of climate change, initiates molecular interactions among genes, proteins, and metabolites. a high-quality perennial grass species, exhibits robust drought resistance. However, the molecular mechanism underlying this resistance remaining largely unexplored.
View Article and Find Full Text PDFArch Razi Inst
June 2024
Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
The aim of this study was to investigate the effects of ultrasound at two different frequencies, namely 30 kHz and 42 kHz, on various aspects of industrial Iranian honey, including its physical, biochemical, antioxidant and antimicrobial properties. Samples were subjected to ultrasound treatment at 30 kHz or 42 kHz for a duration of 1, 5 or 10 minutes at temperatures of 20 °C or 45 °C, respectively. The following parameters were then evaluated on days 1, 30, 90, and 180: HMF content, pH, acidity, proline concentration, total number of aerobic mesophilic bacteria, diastase activity, moisture content, sucrose concentration, fructose concentration, glucose concentration, fructose- glucose ratio, ABTS (antioxidant activity) content, number of osmophiles, phenol concentration, reducing sugar concentration and total sugar concentration.
View Article and Find Full Text PDFPlant Mol Biol
December 2024
College of Agriculture, Guangxi University, Nanning, 530004, China.
Cold stress is an environmental factor that seriously restricts the growth, production and survival of plants, and has received extensive attention in recent years. Hydrogen sulfide (HS) is an ubiquitous gas signaling molecule, and its role in alleviating plant cold stress has become a research focus in recent years. This paper reviews for the first time the significant effect of HS on improving plant cold resistance, which makes up for the gaps in the existing literature.
View Article and Find Full Text PDFProtoplasma
December 2024
School of Life Sciences, Yunnan Normal University, Kunming, 650092, People's Republic of China.
Sucrose (SUC) is a signaling molecule with multiple physiological functions. G protein is a kind of receptor that converts extracellular first messenger into intracellular second messenger. However, it is little known that SUC interplays with G protein signaling in maize thermotolerance.
View Article and Find Full Text PDFEnviron Microbiome
December 2024
Scion, Christchurch, 8011, New Zealand.
Background: Pollen is a crucial source of nutrients and energy for pollinators. It also provides a unique habitat and resource for microbiota. Previous research on the microbiome of pollen has largely focused on angiosperm systems, with limited research into coniferous gymnosperms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!