Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of this investigation was to determine the effect of different lifting cadences on the ground reaction force (GRF) during the squat exercise. Squats performed with greater acceleration will produce greater inertial forces; however, it is not well understood how different squat cadences affect GRF. The hypotheses were that faster squat cadences would result in greater peak GRF and that the contributions of the body and barbell, both of equivalent mass, to total system inertial force would not be different. Six experienced male subjects (31 +/- 4 years, 180 +/- 9 cm, 88.8 +/- 13.3 kg) performed 3 sets of 3 squats using 3 different cadences (fast cadence [FC] = 1-second descent/1-second ascent; medium cadence [MC] = 3-second descent/1-second ascent; and slow cadence [SC] = 4-second descent/2-second ascent) while lifting a barbell mass equal to their body mass. Ground reaction force and velocity sensor data were used to calculate inertial force contributions of both the body and barbell to total inertial force. Peak GRF were significantly higher in FC squats compared to MC (p = 0.0002) and SC (p = 0.0002). Ranges of GRF were also significantly higher in FC compared to MC (p < 0.05) and higher in MC compared to SC (p < 0.05). The inertial forces associated with the body were larger than those associated with the barbell, regardless of cadence. Faster squat cadences result in significantly greater peak GRF as a result of the inertia of the system. This study demonstrates that GRF was more dependent on descent cadence than on ascent cadence and that researchers should not use a single point on the body to approximate the location of the center of mass during squat exercise analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1519/JSC.0b013e3181cb27e7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!