Characteristics of sprint performance in college football players.

J Strength Cond Res

Center for Physical Development Excellence, Department of Physical Education, United States Military Academy, West Point, NewYork, USA.

Published: May 2010

To investigate sprinting strategy, acceleration and velocity patterns were determined in college football players (n = 61) during performance of a 9.1-, 36.6-, and 54.9-m sprints. Acceleration and velocity were determined at 9.1-m intervals during each sprint. Lower-body strength and power were evaluated by 1 repetition maximum (1-RM) squat, power clean, jerk, vertical jump, standing long jump, and standing triple jump. Sprint times averaged 1.78 +/- 0.11 seconds (9.1 m), 5.18 +/- 0.35 seconds (36.6 m), and 7.40 +/- 0.53 seconds. Acceleration peaked at 9.1 m (2.96 +/- 0.44 m x s(-2)), was held constant at 18.3 m (3.55 +/- 0.0.94 m x s(-2)), and was negative at 27.4 m (-1.02 +/- 0.72 m x s(-2)). Velocity peaked at 18.3 m (8.38 +/- 0.65 m x s(-2)) and decreased slightly, but significantly at 27.4 m (7.55 +/- 0.66 m x s(-2)), associated with the negative acceleration. Measures of lower-body strength were significantly related to acceleration, velocity, and sprint performance only when corrected for body mass. Lower-body strength/BM and power correlated highest with 36.6-m time (rs = -0.55 to -0.80) and with acceleration (strength r = 0.67-0.49; power r = 0.73-0.81) and velocity (strength r = 0.68-0.53; power r = 0.74-0.82) at 9.1 m. Sprint times and strength per body mass were significantly lower in lineman compared with linebackers-tight ends and backs. The acceleration and velocity patterns were the same for each position group, and differences in sprint time were determined by the magnitude of acceleration and velocity at 9.1 and 18.3 m. Sprint performance in football players is determined by a rapid increase in acceleration (through 18.3 m) and a high velocity maintained throughout the sprint and is independent of position played. The best sprint performances (independent of sprint distance) appear to be related to the highest initial acceleration (through 18.3 m) and highest attained and maintained velocity. Strength relative to body mass and power appears to impact initial acceleration and velocity (through 18.3 m) in contribution to sprint performance.

Download full-text PDF

Source
http://dx.doi.org/10.1519/JSC.0b013e3181d68107DOI Listing

Publication Analysis

Top Keywords

acceleration velocity
24
sprint performance
16
football players
12
body mass
12
acceleration
11
velocity
10
sprint
10
college football
8
velocity patterns
8
lower-body strength
8

Similar Publications

Background: Phenotyping Alzheimer's Disease (AD) can be crucial to providing personalized treatment. Several studies have analyzed the use of digital biomarkers to characterize a subject's behavior, usually obtained from a single modality, such as speech. However, combining several modalities in a single study has not been deeply studied.

View Article and Find Full Text PDF

Background: Digital mobility outcomes (DMOs) can be captured using body-worn inertial measurement units (IMUs) in lab-based and real-world environments. DMOs may support differential diagnosis of dementia; for example, Alzheimer's disease (AD) and Lewy body disease (LBD) show unique signatures of gait impairment. Growing evidence suggests that turning impairments are related to cognitive decline.

View Article and Find Full Text PDF

The rapid acceleration of urbanization and the surge in car ownership necessitate efficient automatic parking solutions in constricted spaces to address the escalating urban parking issue. To optimize space utilization, enhance traffic efficiency, and mitigate accident risks, a method is proposed for smooth, comfortable, and adaptable automatic parking trajectory planning. This study initially employs a hybrid A* algorithm to generate a preliminary path, then fits the velocity and acceleration based on a cubic polynomial.

View Article and Find Full Text PDF

Exploring Sex-Based Variations in Head Kinematics During Soccer Heading.

Ann Biomed Eng

January 2025

Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.

While studies indicate that females experience a higher concussion risk and more severe outcomes in soccer heading compared to males, comprehensive data on the underlying factors contributing to these sex-based differences are lacking. This study investigates the sex differences in the head-to-ball impact kinematics among college-aged soccer headers in a laboratory-controlled setting. Forty subjects (20 females, 20 males) performed ten headers, and impact kinematics, including peak angular acceleration and velocity (PAA, PAV) and peak linear acceleration (PLA), were measured using mouthguards.

View Article and Find Full Text PDF

Amidst the backdrop of the profound synergy between navigation and visual perception, there is an urgent demand for accurate real-time vehicle positioning in urban environments. However, the existing global navigation satellite system (GNSS) algorithms based on Kalman filters fall short of precision. In response, we introduce an elastic filtering algorithm with visual perception for vehicle GNSS navigation and positioning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!