Background: Amdoxovir acts synergistically with zidovudine in vitro and the combination prevents or delays the selection of thymidine analogue and K65R mutations. In silico studies have shown that a reduced dose of zidovudine (200 mg) results in decreased zidovudine-monophosphate levels, associated with toxicity, while maintaining zidovudine-triphosphate levels, which are associated with antiviral effects. Here, we aimed to assess the short-term tolerability and antiviral activity of amdoxovir in combination with reduced and standard doses of zidovudine.
Methods: The study was a double-blind, placebo-controlled study in HIV-1-infected patients not receiving antiretroviral therapy and with plasma HIV-1 RNA > or =5,000 copies/ml. Patients were randomized to 10 days of twice-daily treatment with 200 mg zidovudine, 300 mg zidovudine, 500 mg amdoxovir, 500 mg amdoxovir plus 200 mg zidovudine or 500 mg amdoxovir plus 300 mg zidovudine. The mean change in viral load (VL) log(10) and area under the virus depletion curve (AUC(VL)) from baseline to day 10 were determined. Laboratory and clinical safety monitoring were performed.
Results: Twenty-four patients were enrolled. The mean VL log(10) change was 0.10 with placebo, -0.69 with zidovudine 200 mg, -0.55 with zidovudine 300 mg, -1.09 with amdoxovir, -2.00 with amdoxovir plus zidovudine (200 mg) and -1.69 with amdoxovir plus zidovudine (300 mg). Amdoxovir plus zidovudine (200 mg) was significantly more potent than amdoxovir monotherapy in AUC(VL) and mean VL decline (P=0.019 and P=0.021, respectively), suggesting synergy. There was markedly decreased VL variability with the combination compared with amdoxovir alone. All adverse events were mild to moderate.
Conclusion: The combination of amdoxovir plus zidovudine appeared synergistic with reduced VL variability. This combined therapy, including the use of a lower zidovudine dosage, warrants further development for the therapy of HIV infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733239 | PMC |
http://dx.doi.org/10.3851/IMP1514 | DOI Listing |
Antimicrob Agents Chemother
July 2014
Center for AIDS Research, Emory University School of Medicine, Atlanta, Georgia, USA Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA
Using an established nonhuman primate model, rhesus macaques were infected intravenously with a chimeric simian immunodeficiency virus (SIV) consisting of SIVmac239 with the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase from clone HXBc2 (RT-SHIV). The impacts of two enhanced (four- and five-drug) highly active antiretroviral therapies (HAART) on early viral decay and rebound were determined. The four-drug combination consisted of an integrase inhibitor, L-870-812 (L-812), together with a three-drug regimen comprising emtricitabine [(-)-FTC], tenofovir (TFV), and efavirenz (EFV).
View Article and Find Full Text PDFPLoS One
September 2014
Department of Pediatrics, Laboratory of Biochemical Pharmacology, Center for AIDS Research, Emory University School of Medicine, Atlanta, Georgia, United States of America ; Veterans Affairs Medical Center, Decatur, Georgia, United States of America.
Highly active antiretroviral therapy (HAART) significantly reduces HIV-1 replication and prevents progression to AIDS. However, residual low-level viremia (LLV) persists and long-lived viral reservoirs are maintained in anatomical sites. These reservoirs permit a recrudescence of viremia upon cessation of therapy and thus HAART must be maintained indefinitely.
View Article and Find Full Text PDFAntivir Ther
July 2010
Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
Background: Amdoxovir acts synergistically with zidovudine in vitro and the combination prevents or delays the selection of thymidine analogue and K65R mutations. In silico studies have shown that a reduced dose of zidovudine (200 mg) results in decreased zidovudine-monophosphate levels, associated with toxicity, while maintaining zidovudine-triphosphate levels, which are associated with antiviral effects. Here, we aimed to assess the short-term tolerability and antiviral activity of amdoxovir in combination with reduced and standard doses of zidovudine.
View Article and Find Full Text PDFPLoS One
April 2010
Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America.
Background: Xenotropic murine leukemia-related retrovirus (XMRV) is a recently discovered retrovirus that has been linked to human prostate cancer and chronic fatigue syndrome (CFS). Both diseases affect a large fraction of the world population, with prostate cancer affecting one in six men, and CFS affecting an estimated 0.4 to 1% of the population.
View Article and Find Full Text PDFAnal Chem
March 2010
Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30332, USA.
Nucleoside reverse transcriptase inhibitors (NRTI) require intracellular phosphorylation, which involves multiple enzymatic steps to inhibit the human immunodeficiency virus type 1 (HIV-1). NRTI-triphosphates (NRTI-TP) compete with endogenous 2'-deoxyribonucleosides-5'-triphosphates (dNTP) for incorporation by the HIV-1 reverse transcriptase (RT). Thus, a highly sensitive analytical methodology capable of quantifying at the low femtomoles/10(6) cells level was necessary to understand the intracellular metabolism and antiviral activity of NRTIs in human peripheral blood mononuclear (PBM) cells and in macrophages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!