Cell cultures of parasitic helminths are an invaluable tool for investigations of basic biological processes, as well as for development of improved chemotherapeutic agents and molecular interactions between host and parasite. We carried out a simple and efficient methodology to isolate Echinococcus granulosus germinal cells which were maintained for at least 4 months while cultivated in the presence of reducing agents and hormones. Microscopic analysis of the primary cell culture revealed the presence of cells with similar Echinococcus germinal cell morphology and behaviour. Population doubling time was estimated at 48 h, showing a rapid division rate. To discard possible host contamination, the specificity of the primary culture was tested by nested PCR, analyzing mdh gene expression and obtaining only one product with the expected size. We also studied the expression of specific E. granulosus proteins in primary cell culture. The novel and systematized method described here constitutes a powerful tool for investigations in cystic echinococcosis on biochemical and biological aspects related to the life cycle of the parasite and mechanisms of host-parasite interactions. This method also constitutes a powerful tool for the design of more efficient therapeutic alternatives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpara.2010.03.008 | DOI Listing |
J Assist Reprod Genet
January 2025
Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research Group Genetics, Reproduction and Development, Centre for Medical Genetics, Laarbeeklaan 101, 1090, Brussels, Belgium.
Purpose: Primary ovarian insufficiency (POI) is an important cause of female infertility, stemming from follicle dysfunction or premature oocyte depletion. Pathogenic variants in genes such as NOBOX, GDF9, BMP15, and FSHR have been linked to POI. NOBOX, a transcription factor expressed in oocytes and granulosa cells, plays a pivotal role in folliculogenesis.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
January 2025
Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China.
Cleft lip and palate (CL/P) are prevalent congenital anomalies with complex genetic causes. The G874A mutation of T-box transcription factor 22 (TBX-22) gene is notably associated with CL/P, while the underlying mechanism remains to be clarified. Studies have shown that the restriction of epithelial-mesenchymal transformation (EMT) process in medial edge epithelial cells (MEEs) is crucial for CL/P development.
View Article and Find Full Text PDFSports Med Open
January 2025
Institute of Primary Care, University of Zurich, Zurich, Switzerland.
Background: Marathon training and running have many beneficial effects on human health and physical fitness; however, they also pose risks. To date, no comprehensive review regarding both the benefits and risks of marathon running on different organ systems has been published.
Main Body: The aim of this review was to provide a comprehensive review of the benefits and risks of marathon training and racing on different organ systems.
Mol Biol Rep
January 2025
Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.
View Article and Find Full Text PDFCell Death Differ
January 2025
Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Aging is a major risk factor for Alzheimer's disease (AD). With the prevalence of AD increased, a mechanistic linkage between aging and the pathogenesis of AD needs to be further addressed. Here, we report that a small ubiquitin-related modifier (SUMO) modification of p53 is implicated in the process which remarkably increased in AD patient's brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!