Predicting polymer nanofiber interactions via molecular simulations.

ACS Appl Mater Interfaces

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Published: April 2010

Physical and functional properties of nonwoven textiles and other fiberlike materials depend strongly on the number and type of fiber-fiber interactions. For nanoscale polymeric fibers in particular, these interactions are governed by the surfaces of and contacts between fibers. We employ both molecular dynamics (MD) simulations at a temperature below the glass transition temperature T(g) of the polymer bulk, and molecular statics (MS), or energy minimization, to study the interfiber interactions between prototypical polymeric fibers of 4.6 nm diameter, comprising multiple macromolecular chains each of 100 carbon atoms per chain (C100). Our MD simulations show that fibers aligned parallel and within 9 nm of one another experience a significant force of attraction. These fibers tend toward coalescence on a very short time scale, even below T(g). In contrast, our MS calculations suggest an interfiber interaction that transitions from an attractive to a repulsive force at a separation distance of 6 nm. The results of either approach can be used to obtain a quantitative, closed-form relation describing fiber-fiber interaction energies U(s). However, the predicted form of interaction is quite different for the two approaches, and can be understood in terms of differences in the extent of molecular mobility within and between fibers for these different modeling perspectives. The results of these molecular-scale calculations of U(s) are used to interpret experimental observations for electrospun polymer nanofiber mats. These findings highlight the role of temperature and kinetically accessible molecular configurations in predicting interface-dominated interactions at polymer fiber surfaces, and prompt further experiments and simulations to confirm these effects in the properties of nonwoven mats comprising such nanoscale fibers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am1000135DOI Listing

Publication Analysis

Top Keywords

polymer nanofiber
8
properties nonwoven
8
polymeric fibers
8
fibers
7
interactions
5
molecular
5
predicting polymer
4
nanofiber interactions
4
interactions molecular
4
simulations
4

Similar Publications

Enantiomer-Dependent Supramolecular Antibacterial Therapy for Drug-Resistant Bacterial Keratitis.

Langmuir

January 2025

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.

Bacteria have the potential to exhibit divergent stereochemical preferences for different levels of chiral structures, including from molecule, supramolecule, to nanomicroscale helical structure. Accordingly, the structure-activity relationship between chirality and bactericidal activity remains uncertain. In this study, we seek to understand the multivalent molecular chirality effect of chiral supramolecular polymers on antibacterial activity.

View Article and Find Full Text PDF

Coordination-driven metallo-supramolecular polymers hold significant potential as highly efficient catalysts for photocatalytic CO reduction, owing to the covalent integration of the light harvesting unit, catalytic center and intrinsic hierarchical nanostructures. In this study, we present the synthesis, characterization, and gelation behaviour of a novel low molecular weight gelator (LMWG) integrating a benzo[1,2-:4,5-']dithiophene core with terpyridine (TPY) units alkyl amide chains (TPY-BDT). The two TPY ends of the TPY-BDT unit efficiently chelate with metal ions, enabling the formation of a metallo-supramolecular polymer that brings together the catalytic center and a photosensitizer in close proximity, maximizing catalytic efficiency for CO reduction.

View Article and Find Full Text PDF

Elucidating Mesostructural Effects on Thermal Conductivity for Enhanced Insulation Applications.

Small

January 2025

Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China.

Thermal management is a key link in improving energy utilization and preparing insulation materials with excellent performance is the core technological issue. Complex and irregular pore structures of insulation materials hinder the exploration of structure-property relationships and the further promotion of material performance. Ordered mesoporous silica (OMS) is a kind of porous material with ordered frameworks.

View Article and Find Full Text PDF

This study aimed to develop bead-free nanofibers for effective omega-3 encapsulation using optimal mixing ratios of whey protein isolate (WPI)/polyvinyl alcohol (PVA) blends via electrospinning method. Various WPI-PVA ratios (100:0, 90:10, 80:20, 70:30, 60:40, 50:50 v/v) were examined for surface tension, viscosity, and conductivity. SEM images revealed uneven nanofibers with bead at 90:10 and 80:20 ratios, while the 70:30 ratio produced uniform and bead-free nanofibers with an average diameter of 262.

View Article and Find Full Text PDF

Carbon quantum dot-anchored polyaniline on electrospun carbon nanofibers as freestanding electrodes for symmetric solid-state supercapacitors.

Dalton Trans

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, People's Republic of China.

A binder-free and freestanding electrode was designed by uniformly immobilizing carbon quantum dot (CQD)-anchored polyaniline (PANI) heterostructures onto electrospun carbon nanofibers (CNFs) a facile hierarchical assembly process. The fabricated freestanding CNF/PANI/CQD electrode exhibits a unique three-dimensional (3D) network nanostructure, which accelerates ion migration between the interior and surface of the electrode, thereby enhancing its charging and discharging performance. Moreover, the functional groups on the surface of CQDs could anchor PANI through possible chemical bonding, which not only improves the stability of the PANI/CQD heterojunction but also creates an additional conductive channel for the PANI polymer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!