A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Horticultural plant diseases multispectral classification using combined classified methods]. | LitMetric

[Horticultural plant diseases multispectral classification using combined classified methods].

Guang Pu Xue Yu Guang Pu Fen Xi

School of Physics & Electronic Information Technology, Yunnan Normal University, Kunming 650092, China.

Published: February 2010

The research on multispectral data disposal is getting more and more attention with the development of multispectral technique, capturing data ability and application of multispectral technique in agriculture practice. In the present paper, a cultivated plant cucumber' familiar disease (Trichothecium roseum, Sphaerotheca fuliginea, Cladosporium cucumerinum, Corynespora cassiicola, Pseudoperonospora cubensis) is the research objects. The cucumber leaves multispectral images of 14 visible light channels, near infrared channel and panchromatic channel were captured using narrow-band multispectral imaging system under standard observation and illumination environment, and 210 multispectral data samples which are the 16 bands spectral reflectance of different cucumber disease were obtained. The 210 samples were classified by distance, relativity and BP neural network to discuss effective combination of classified methods for making a diagnosis. The result shows that the classified effective combination of distance and BP neural network classified methods has superior performance than each method, and the advantage of each method is fully used. And the flow of recognizing horticultural plant diseases using combined classified methods is presented.

Download full-text PDF

Source

Publication Analysis

Top Keywords

classified methods
12
plant diseases
8
combined classified
8
multispectral data
8
multispectral technique
8
neural network
8
effective combination
8
multispectral
7
classified
6
[horticultural plant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!