As a part of a longitudinal study in the highlands of Guatemala to elicit the chronic health effects of wood smoke from cooking, mean area and personal 48 h concentrations of 2.5 microm particulate matter (PM2.5) and carbon monoxide (CO) were measured every 3 months over 19 months. Monitoring was conducted in 63 households, 28 using traditional open wood fires and 35 using wood cookstoves with chimneys. The goal of this paper is to estimate personal exposure concentrations to PM2.5 using the measurements from CO diffusion tubes as a proxy. CO tubes are cheaper and easier to use than PM-monitoring devices, and can be worn by all family members, even infants. The relationship of PM2.5 and CO was determined by comparing measurements from both co-located instruments. CO measurements in ppm were corrected for temperature and pressure to mass concentrations. PM2.5 exposure was modeled with the following linear regression created using measured concentrations: PM2.5 (mg m(-3)) = 0.10 (0.093, 0.12) x CO (mg m(-3)) + 0.067 (0.0069, 0.13), R(2) = 0.76. No significant difference was found between the separate regressions for open fires and cookstoves. No significant improvement was obtained by applying a mixed statistical model. The equation was used to estimate personal exposures of PM2.5 using personal CO measurements from CO tubes worn by women, infants under 18 months, and children 48-72 months. Estimated 48 h mean personal PM2.5 concentrations for mother, infants, and children in open-fire homes were 0.27 +/- 0.02, 0.20 +/- 0.02, and 0.16 +/- 0.02 mg m(-3) respectively. In chimney-stove homes, mothers and children experienced PM2.5 personal concentrations of 0.22 +/- 0.03 and 0.14 +/- 0.03 mg m(-3), respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b916068jDOI Listing

Publication Analysis

Top Keywords

concentrations pm25
12
+/- 002
12
pm25
9
personal pm25
8
personal concentrations
8
estimate personal
8
pm25 personal
8
+/- 003
8
personal
6
concentrations
6

Similar Publications

Long-term exposure to PM pollution increases the risk of cardiovascular diseases, particularly ischemic heart disease (IHD). Current assessments of the health effects related to PM exposure are limited by sparse ground monitoring stations and applicable disease research cohorts, making accurate health effect evaluations challenging. Using satellite-observed aerosol optical depth (AOD) data and the XGBoost-PM25 model, we obtained 1 km scale PM exposure levels across China.

View Article and Find Full Text PDF

Although total carbon (TC) is an important component of fine particulate matter (PM: particulate matter with aerodynamic diameter of <2.5 μm); its sources remain partially unidentified, especially in coastal urban areas. With ongoing development of the global economy and maritime activities, ship-generated TC emissions in port areas cannot be neglected.

View Article and Find Full Text PDF

Bacteria and fungi are abundant and ubiquitous in bioaerosols in hospital environments. Understanding the distribution and diversity of microbial communities within bioaerosols is critical for mitigating their detrimental effects. Our knowledge on the composition of bacteria or fungi in bioaerosols is limited, especially the potential pathogens present in fine particulate matter (PM) from specialized hospitals.

View Article and Find Full Text PDF

Background: In recent decades, there has been a growing interest within the scientific community regarding the study of the fraction that could be released in simulated biological fluids to estimate in vitro bioaccessibility and bioavailability of compounds. Concerning particulate matter (PM), studies were essentially focused on metal (oid)s probably due to more complex methodologies needed for organic compounds, requiring extraction and pre-concentration steps from simulated fluids, followed by chromatographic analysis. Thus, the development of a simple and sensitive methodology for the analysis of multi-class organic compounds released in different inhalation simulated fluids would represent a great contribution to the field.

View Article and Find Full Text PDF

The impact of elevated temperature at the reproductive stage of a crop is one of the critical limitations that influence crop growth and productivity globally. This study was aimed to reveal how sowing time and changing field temperature influence on the regulation of oxidative stress indicators, antioxidant enzymes activity, soluble sugars (SS), and amino acids (AA) in Indian Mustard. The current study was carried out during the 2017-2018 and 2018-2019 where, five varieties of mustard .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!