Mps1, a dual-specificity kinase, is required for the proper functioning of the spindle assembly checkpoint and for the maintenance of chromosomal stability. As Mps1 function has been implicated in numerous phases of the cell cycle, the development of a potent, selective small-molecule inhibitor of Mps1 should facilitate dissection of Mps1-related biology. We describe the cellular effects and Mps1 cocrystal structures of new, selective small-molecule inhibitors of Mps1. Consistent with RNAi studies, chemical inhibition of Mps1 leads to defects in Mad1 and Mad2 establishment at unattached kinetochores, decreased Aurora B kinase activity, premature mitotic exit and gross aneuploidy, without any evidence of centrosome duplication defects. However, in U2OS cells having extra centrosomes (an abnormality found in some cancers), Mps1 inhibition increases the frequency of multipolar mitoses. Lastly, Mps1 inhibitor treatment resulted in a decrease in cancer cell viability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857554 | PMC |
http://dx.doi.org/10.1038/nchembio.345 | DOI Listing |
Transplant Cell Ther
January 2025
Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University; Atlanta, GA, USA.
While highly morbid forms of chronic graft versus host disease (cGVHD) and severe late effects of allogeneic hematopoietic cell transplant (HCT) can impact children and adults alike, unique considerations arise in pediatric cases regarding diagnosis, monitoring, treatment, and likelihood of resolution. As children can present with atypical features of cGVHD, and with more significant disease due to inability to communicate symptoms, they may be at increased risk for highly morbid forms of cGVHD and incur greater subsequent late effects, which may be more pronounced in those with underlying chromosomal breakage syndromes, with higher prevalence in pediatric HCT recipients. The long-term effects of cGVHD and its therapies include impaired immune reconstitution, leading to increased risks of infection and secondary malignant neoplasms.
View Article and Find Full Text PDFEMBO Rep
January 2025
Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
Spindle assembly checkpoint (SAC) inhibitors are a recently developed class of drugs, which perturb chromosome segregation during cell division, induce chromosomal instability (CIN), and eventually lead to cell death. The molecular features that determine cellular sensitivity to these drugs are not fully understood. We recently reported that aneuploid cancer cells are preferentially sensitive to SAC inhibition.
View Article and Find Full Text PDFProteins
January 2025
Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India.
MPS1 kinase is a dual specificity kinase that plays an important role in the spindle assembly checkpoint mechanism during cell division. Overexpression of MPS1 kinase is reported in several cancers. However, drug discovery and development efforts targeting MPS1 kinase did not result in any clinically successful candidates.
View Article and Find Full Text PDFMol Cell
December 2024
Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan. Electronic address:
Viral mimicry driven by endogenous double-stranded RNA (dsRNA) stimulates innate and adaptive immune responses. However, the mechanisms that regulate dsRNA-forming transcripts during cancer therapy remain unclear. Here, we demonstrate that dsRNA is significantly accumulated in cancer cells following pharmacologic induction of micronuclei, stimulating mitochondrial antiviral signaling (MAVS)-mediated dsRNA sensing in conjunction with the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway.
View Article and Find Full Text PDFCancer Res Treat
December 2024
Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!