The present study was undertaken to examine the hemodynamic state using the latest ultrasound biomicroscopy (UBM) technique and to investigate the effect of local shear stress on the development of atherosclerosis in the constrictive collar-treated carotid arteries of apolipoprotein E-deficient (apoE(-/-)) mice. Fifty-six male apoE(-/-) mice fed a high-lipid diet were divided into an interventional group (n = 48) and the control group (n = 8). Constrictive and nonconstrictive collars were placed around the carotid artery of the mice in the interventional group and the control group, respectively. The carotid lumen diameters and flow velocities were measured by UBM, and shear stress in the lesion region was calculated. Histopathology and electron microscopy were performed to observe the morphological changes in the carotid artery. In the region proximal to the constrictive collar, shear stress was significantly reduced 2 days after collar placement and remained low over time compared with the baseline level. In contrast, within the constrictive collar region, shear stress was increased significantly. Although endothelial permeability was enhanced in both regions, monocyte chemotaxis protein-1 (MCP-1) expression, macrophage infiltration, and atherosclerotic lesions were more prominent in the region proximal to the constrictive collar. Moreover, increased MCP-1 expression was observed as early as 2 days after constrictive collar placement, which preceded the morphological changes of the vessel wall. In conclusion, UBM offers a noninvasive and reliable technique for measuring shear stress in apoE(-/-) mice. Persistent low shear stress promotes endothelial permeability and enhances MCP-1 expression and macrophage recruitment, which were essential in the pathogenesis of atherosclerosis in apoE(-/-) mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00308.2009 | DOI Listing |
Nat Commun
December 2024
Department of Chemical Engineering, Electrochemical Innovation Lab, University College London, London, UK.
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer solutions to challenges intrinsic to low-temperature PEMFCs, such as complex water management, fuel inflexibility, and thermal integration. However, they are hindered by phosphoric acid (PA) leaching and catalyst migration, which destabilize the critical three-phase interface within the membrane electrode assembly (MEA). This study presents an innovative approach to enhance HT-PEMFC performance through membrane modification using picosecond laser scribing, which optimises the three-phase interface by forming a graphene-like structure that mitigates PA leaching.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
Pipe-stuck, filtrate volume, and formation damage during the drilling operation are directly related to the poor performance of drilling fluids. Hence, considerable attention is required to improve the filtration and rheological properties of drilling fluids and achieve industrial and environmental qualification standards. This study experimentally investigates the impact of Pectin and Astragalus gum biopolymers on the filtration and rheological properties of the water-based drilling fluid (WBDF).
View Article and Find Full Text PDFPol J Vet Sci
September 2024
Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
Bovine endometritis has become a persistent issue in the global dairy business, resulting in huge economic losses. Due to their numerous positive benefits, Chinese herbal medicines (CHMs) have recently demonstrated remarkable pharmacological potential against endometritis. The objective of this study was to investigate the effects and elucidate the underlying mechanisms of the Yimucao formula (YMF) that involves five herbs in lactation cows under endometritis conditions.
View Article and Find Full Text PDFJ Mech Phys Solids
March 2025
School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA.
Thrombosis, when occurring undesirably, disrupts normal blood flow and poses significant medical challenges. As the skeleton of blood clots, fibrin fibers play a vital role in the formation and fragmentation of blood clots. Thus, studying the deformation and fracture characteristics of fibrin fiber networks is the key factor to solve a series of health problems caused by thrombosis.
View Article and Find Full Text PDFNitric Oxide
December 2024
Key Laboratory for Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China. Electronic address:
Background: Osteocytes are crucial for detecting mechanical stimuli and translating them into biochemical responses within the bone. The primary cilium, a cellular 'antenna,' plays a vital role in this process. However, there is a lack of direct correlation between cilium length changes and osteocyte mechanosensitivity changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!