One of the grand challenges in chemical biology is identifying a small-molecule modulator for each individual function of all human proteins. Instead of targeting one protein at a time, an efficient approach to address this challenge is to target entire protein families by taking advantage of the relatively high levels of chemical promiscuity observed within certain boundaries of sequence phylogeny. We recently developed a computational approach to identifying the potential protein targets of compounds based on their similarity to known bioactive molecules for almost 700 targets. Here, we describe the direct identification of novel antagonists for all four adenosine receptor subtypes by applying our virtual profiling approach to a unique synthesis-driven chemical collection composed of 482 biologically-orphan molecules. These results illustrate the potential role of in silico target profiling to guide efficiently screening campaigns directed to discover new chemical probes for all members of a protein family.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2010.03.048 | DOI Listing |
Breast J
January 2025
Department of Oncology 54 B1 Herlev Hospital University of Copenhagen, Herlev Ringvej 75, DK-2730, Copenhagen, Denmark.
Introduction: Triple-negative breast cancer (TNBC) is a subgroup of breast cancer characterized by the absence of estrogen and the human epidermal 2 receptor and also a lack of targeted therapy options. Chemotherapy has so far been the only approved treatment option, and patients with metastatic cancer have a dismal prognosis with a median overall survival (OS) of approximately 14 months. Identification of druggable targets for metastatic TNBC is therefore of special interest.
View Article and Find Full Text PDFRev Cardiovasc Med
December 2024
Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada.
Cirrhotic cardiomyopathy is defined as systolic and diastolic dysfunction in patients with cirrhosis, in the absence of any primary heart disease. These changes are mainly due to the malfunction or abnormalities of cardiomyocytes. Similar to non-cirrhotic heart failure, cardiomyocytes in cirrhotic cardiomyopathy demonstrate a variety of abnormalities: from the cell membrane to the cytosol and nucleus.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China. Electronic address:
Breast cancer (BC) ranks among the most prevalent malignancies affecting women, with advanced-stage patients facing an increased mortality risk. Myeloid-derived suppressor cells (MDSCs) contribute significantly to poor prognostic outcomes. Research has concentrated predominantly on the immunological mechanisms underlying MDSC functions, but a comprehensive investigation into the metabolic interactions between BC cells and MDSCs is lacking.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang city, Jiangxi province, China.
P2X7 receptor (P2X7R) plays a role in regulating tumor progression, but it is unclear whether P2X7R affects the pathological characteristics of patients with gastric cancer and the activity of gastric cancer cells. Therefore, this study preliminarily investigated the relationship between P2X7R and clinicopathological features of patients with gastric cancer, and further explored the effect of P2X7R on the proliferation, migration and invasion of gastric cancer cells through functional experiments. The results showed that P2X7R was highly expressed in gastric cancer tissues and gastric cancer cells.
View Article and Find Full Text PDFNat Commun
December 2024
PSI Center for Life Sciences, Villigen PSI, Switzerland.
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans. The binding and dissociation of ligands tunes the inherent conformational flexibility of these important drug targets towards distinct functional states. Here we show how to trigger and resolve protein-ligand interaction dynamics within the human adenosine A receptor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!