Clearance of apoptotic cells is involved in the resolution of inflammation, and this mechanism is controlled by the regulation of pro- and anti-inflammatory cytokine production during the ingestion of apoptotic cells. Inflamed areas show extracellular acidity, and low pH stimulates cellular functions of immune cells. However, little is known about the influence of extracellular acidic pH on the function of phagocytic cells. In this study, we showed that stabilin-2-mediated phagocytosis is activated in low pH media (pH 6.8) and examined the molecular mechanisms underlying this pH-dependent enhancement of phagocytic activity. Stabilin-2, which is expressed in human monocyte derived macrophages (HMDM), is a phosphatidylserine (PS) receptor that mediates phagocytosis of apoptotic cells, and releases the anti-inflammatory cytokine, TGF-beta. The PS binding activity of stabilin-2 is enhanced in low pH, and a conserved histidine(1403) in close proximity to the PS binding loop is critical for pH-dependent activity. We propose that protonation of His(1403) may rearrange the PS binding loop to enhance binding affinity in low pH, indicating that acidic pH might act as a danger signal to stimulate stabilin-2-mediated phagocytosis to resolve inflammation. Considering that phosphatidylserine is an important target molecule for apoptotic cells in the acidic microenvironment of inflammation and tumors, our results also have implications for pH sensitive targeting of apoptotic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2010.03.024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!