Vitamin E (α-tocopherol) supplementation has been tested as prophylaxis against gestational disorders associated with oxidative damage. However, recent evidence showing that high maternal α-tocopherol intake can adversely affect offspring development raises concerns on the safety of vitamin E extradosages during pregnancy. Besides acting as an antioxidant, α-tocopherol depresses cell proliferation and modulates cell signaling through inhibiting protein kinase C (PKC), a kinase that is deeply involved in neural maturation and plasticity. Possible effects of α-tocopherol loads in the maturing brain, where PKC dysregulation is associated to developmental dysfunctions, are poorly known. Here, supranutritional doses of α-tocopherol were fed to pregnant and lactating dams to evaluate the effects on PKC signaling and morphofunctional maturation in offspring hippocampus. Results showed that maternal supplementation potentiates hippocampal α-tocopherol incorporation in offspring and leads to marked decrease of PKC phosphorylation throughout postnatal maturation, accompanied by reduced phosphorylation of growth-associated protein-43 and myristoylated alanine-rich C kinase substrate, two PKC substrates involved in neural development and plasticity. Although processes of neuronal maturation, synapse formation and targeting appeared unaffected, offspring of supplemented mothers displayed a marked reduction of long-term synaptic plasticity in juvenile hippocampus. Interestingly, this impairment persisted in adulthood, when a deficit in hippocampus-dependent, long-lasting spatial memory was also revealed. In conclusion, maternal supplementation with elevated doses of α-tocopherol can influence cell signaling and synaptic plasticity in developing hippocampus and promotes permanent adverse effects in adult offspring. The present results emphasize the need to evaluate the safety of supranutritional maternal intake of α-tocopherol in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jnutbio.2009.11.014 | DOI Listing |
J Transl Med
January 2025
Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.
View Article and Find Full Text PDFTrends Biochem Sci
January 2025
Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. Electronic address:
The brain is an exceptionally lipid-rich organ with a very complex lipid composition. Lipids are central in several neuronal processes, including membrane formation and fusion, myelin packing, and lipid-mediated signal transmission. Lipid diversity is associated with the evolution of higher cognitive abilities in primates, is affected by neuronal activity, and is instrumental for synaptic plasticity, illustrating that lipids are not static components of synaptic membranes.
View Article and Find Full Text PDFeNeuro
January 2025
University of Rochester Medical Center, Department of Neuroscience,
A unique pool of immature glutamatergic neurons in the primate amygdala, known as the paralaminar nucleus (PL), are maturing between infancy and adolescence. The PL is a potential substrate for the steep growth curve of amygdala volume during this developmental period. A microglial component is also embedded among the PL neurons, and likely supports local neuronal maturation and emerging synaptogenesis.
View Article and Find Full Text PDFJ Neurosci
January 2025
Institute of Neuroimmunology, Slovak Academy of Science, 84510 Bratislava, Slovakia.
Extracellular matrix (ECM) is a network of macromolecules which has two forms - perineuronal nets (PNNs) and a diffuse ECM (dECM) - both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility.
View Article and Find Full Text PDFRedox Biol
December 2024
Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China. Electronic address:
Chronic itch which is primarily associated with dermatologic, systemic, or metabolic disorders is often refractory to most current antipruritic medications, thus highlighting the need for improved therapies. Oxidative damage is a novel determinant of spinal pruriceptive sensitization and synaptic plasticity. The resolution of oxidative insult by molecular hydrogen has been manifested.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!