In amyotrophic lateral sclerosis (ALS), the exogenous temporal triggers that result in initial motor neuron death are not understood. Overactivation and consequent accelerated loss of vulnerable motor neurons is one theory of disease initiation. The vulnerability of motor neurons in response to chronic peripheral nerve hyperstimulation was tested in the SOD1(G93A) rat model of ALS. A novel in vivo technique for peripheral phrenic nerve stimulation was developed via intra-diaphragm muscle electrode implantation at the phrenic motor endpoint. Chronic bilateral phrenic nerve hyperstimulation in SOD1(G93A) rats accelerated disease progression, including shortened lifespan, hastened motor neuron loss and increased denervation at diaphragm neuromuscular junctions. Hyperstimulation also resulted in focal decline in adjacent forelimb function. These results show that peripheral phrenic nerve hyperstimulation accelerates cell death of vulnerable spinal motor neurons, modifies both temporal and anatomical onset of disease, and leads to involvement of disease in adjacent anatomical regions in this ALS model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910141PMC
http://dx.doi.org/10.1016/j.nbd.2010.03.021DOI Listing

Publication Analysis

Top Keywords

motor neurons
12
nerve hyperstimulation
12
phrenic nerve
12
motor neuron
8
peripheral phrenic
8
motor
6
disease
5
peripheral
4
peripheral hyperstimulation
4
hyperstimulation alters
4

Similar Publications

Amyotrophic lateral sclerosis (ALS) lacks a specific biomarker, but is defined by relatively selective toxicity to motor neurons (MN). As others have highlighted, this offers an opportunity to develop a sensitive and specific biomarker based on detection of DNA released from dying MN within accessible biofluids. Here we have performed whole genome bisulfite sequencing (WGBS) of iPSC-derived MN from neurologically normal individuals.

View Article and Find Full Text PDF

Motor cortical neuronal hyperexcitability associated with α-synuclein aggregation.

NPJ Parkinsons Dis

January 2025

Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, USA.

ΑBSTRACT: In Parkinson's disease (PD), Lewy pathology deposits in the cerebral cortex, but how the pathology disrupts cortical circuit integrity and function remains poorly understood. To begin to address this question, we injected α-synuclein (αSyn) preformed fibrils (PFFs) into the dorsolateral striatum of mice to seed αSyn pathology in the cortical cortex and induce degeneration of midbrain dopaminergic neurons. We reported that αSyn aggregates accumulate in the motor cortex in a layer- and cell-subtype-specific pattern.

View Article and Find Full Text PDF

Infiltrating peripheral monocyte TREM-1 mediates dopaminergic neuron injury in substantia nigra of Parkinson's disease model mice.

Cell Death Dis

January 2025

NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China.

Neuroinflammation is a key factor in the pathogenesis of Parkinson's disease (PD). Activated microglia in the central nervous system (CNS) and infiltration of peripheral immune cells contribute to dopaminergic neuron loss. However, the role of peripheral immune responses, particularly triggering receptor expressed on myeloid cells-1 (TREM-1), in PD remains unclear.

View Article and Find Full Text PDF

The degeneration of pyramidal tracts has been reported in frontotemporal lobar degeneration with TDP-43 (TAR DNA-binding protein 43) pathology (FTLD-TDP) type C. Herein, we examined the detailed pathology of the primary motor area and pyramidal tracts in the central nervous system in four autopsy cases of FTLD-TDP type C, all of which were diagnosed by neuropathological, biochemical, and genomic analyses. Three patients showed right dominant atrophy of the frontal and temporal lobes, while the other patient showed left dominant atrophy.

View Article and Find Full Text PDF

Recent evidence links gut microbiota alterations to neurodegenerative disorders, including Parkinson's disease (PD). Replenishing the abnormal composition of gut microbiota through gut microbiota-based interventions "prebiotics, probiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT)" has shown beneficial effects in PD. These interventions increase gut metabolites like short-chain fatty acids (SCFAs) and glucagon-like peptide-1 (GLP-1), which may protect dopaminergic neurons via the gut-brain axis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!