The hydrogel template method was used to fabricate homogeneous drug-PLGA microparticles. Four drugs (felodipine, risperidone, progesterone, and paclitaxel) were loaded into the PLGA particles with the homogeneous size of 10microm, 20microm, and 50microm. The drug loading into the PLGA microparticles was 50% and higher. The felodipine-PLGA microstructures of four different sizes showed that the drug release kinetics is dependent on the total surface area available for drug release. The smaller the particle size, the release rate was faster. Two types of microparticles (10microm diameter and 10microm height, and 50microm diameter and 5microm height) showed zero-order release and complete release was observed within 2weeks. The release rate, however, was not exactly proportional to the surface area. Different drugs which were loaded into the same PLGA formulation showed different release profiles. The main difference was on the initial burst release. The overall release profile seems to be similar for different drugs, if the release profile is adjusted to eliminate the burst release. The initial burst release appears to be inversely related to the water-solubility of a drug, i.e., the lower the water-solubility of a drug, the higher the burst release. The hydrogel template method allowed preparation of homogeneous particles with predefined sizes with high drug loading. It allowed study on the effect of size and shape on the drug release kinetics. With the microparticles of homogeneous size and shape, the drug release kinetics can be projected based on the size of microparticles and water-solubility of a drug. The ability of making homogeneous particles is expected to provide better prediction and reproducibility of the drug release property of a given formulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2010.03.024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!