Death-associated protein 3 (DAP3) is crucial for promoting apoptosis induced by various stimulations. This report demonstrates that DAP3 is also important for T cell receptor (TCR)-mediated apoptosis induction in immature thymocytes. Enforced expression of DAP3 accelerated the negative selection in developing thymocytes, using the reaggregate thymus organ culture system. In addition, expression of DAP3 accelerated TCR-mediated apoptosis induction in DO11.10 cells. We also demonstrated that DAP3 translocates into the nucleus during TCR-mediated apoptosis in a Nur77 dependent manner. It is concluded that DAP3 is critical for TCR-mediated induction of apoptosis at the downstream of Nur77.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2010.04.018DOI Listing

Publication Analysis

Top Keywords

apoptosis induction
12
tcr-mediated apoptosis
12
death-associated protein
8
expression dap3
8
dap3 accelerated
8
apoptosis
6
dap3
6
critical function
4
function death-associated
4
protein cell
4

Similar Publications

Subarachnoid hemorrhage (SAH) is a specific type of stroke. Dihydroquercetin (DHQ), a flavonoid, is known for its various pharmacological properties. This study aimed to explore the roles and mechanisms of DHQ in influencing the progression of SAH.

View Article and Find Full Text PDF

Ribosome profiling reveals dynamic translational landscape in HEK293T cells following X-ray irradiation.

Genomics

January 2025

Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:

X-ray irradiation induces widespread changes in gene expression. Positioned at the bottom of the central dogma, translational regulation responds swiftly to environmental stimuli, fine-tuning protein levels. However, the global view of mRNA translation following X-ray exposure remains unclear.

View Article and Find Full Text PDF

Sleep deprivation affects pain sensitivity by increasing oxidative stress and apoptosis in the medial prefrontal cortex of rats via the HDAC2-NRF2 pathway.

Biomed J

January 2025

Department of Anesthesiology, Perioperative and Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province 450000, China. Electronic address:

Sleep is crucial for sustaining normal physiological functions, and sleep deprivation has been associated with increased pain sensitivity. The histone deacetylases (HDACs) are known to significantly regulate in regulating neuropathic pain, but their involvement in nociceptive hypersensitivity during sleep deprivation is still not fully understood. Utilizing a modified multi-platform water environment technique to establish a sleep deprivation model.

View Article and Find Full Text PDF

Objectives: The aim of this study was to investigate the effect of eight weeks of aerobic training (AT) and vitamin C supplementation (VC) on apoptotic markers in hippocampus tissue of AD rats treated with trimethyltin (TMT).

Materials And Methods: In this experimental study, 32 Sprague- Dawley rats (mean age: 14-18 months and mean weight 270-320 g) were treated with (10 mg/kg) TMT and divided into 4 groups including: 1) ADcontrol, 2) VC, 3) AT and 4) AT+VC groups. In order to investigate the effects of AD induction on research variables, 8 healthy rats selected as healthy control group (HC).

View Article and Find Full Text PDF

Marine natural products show a large variety of unique chemical structures and potent biological activities. Elucidating the target molecule and the mechanism of action is an essential and challenging step in drug development starting with a natural product. Odoamide, a member of aurilide-family isolated from Okinawan marine cyanobacterium, has been known to exhibit highly potent cytotoxicity against various cancer cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!