The present studies examined the effect of chronic neuropathic pain on cannabinoid receptor density and receptor-mediated G-protein activity within supraspinal brain areas involved in pain processing and modulation in mice. Chronic constriction injury (CCI) produced a significant decrease in WIN 55,212-2-stimulated [(35)S]GTPgammaS binding in membranes prepared from the rostral anterior cingulate cortex (rACC) of CCI mice when compared to sham-operated controls. Saturation binding with [(3)H]SR 141716A in membranes of the rACC showed no significant differences in binding between CCI and sham mice. Analysis of levels of the endocannabinoids anandamide (AEA) or 2-arachidonoylglycerol (2-AG) in the rACC following CCI showed no significant differences between CCI and sham mice. These data suggest that CCI produced desensitization of the cannabinoid 1 receptor in the rACC in the absence of an overall decrease in cannabinoid 1 receptor density or change in levels of AEA or 2-AG. These data are the first to show alterations in cannabinoid receptor function in the rostral anterior cingulate cortex in response to a model of neuropathic pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736380PMC
http://dx.doi.org/10.1016/j.brainres.2010.03.105DOI Listing

Publication Analysis

Top Keywords

cannabinoid receptor
20
rostral anterior
12
anterior cingulate
12
cingulate cortex
12
chronic constriction
8
constriction injury
8
neuropathic pain
8
receptor density
8
cci produced
8
racc cci
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!