Molecular complexes in methanol (MeOH)-N-methylformamide (NMF) mixtures were studied based on their FTIR-ATR spectra, to which two methods of analysis were applied: factor analysis and a quantitative version of the difference-spectra method. The mean composition of a complex between NMF and MeOH molecules over the whole range of mixture compositions was determined. Absorbing species differentiated with regard to the interaction energies of the carbonyl oxygen with methanol molecules were recognized in both compositional regions with a marked excess of one component. Possible structures for complexes of various stoichiometries were optimized by ab initio calculations in the gas phase and both liquid NMF and MeOH using the polarizable continuum model (PCM). Thermodynamic functions calculated for the optimized structures were used to find the most stable structure for each stoichiometry. Individuals distinguished by the spectral analysis were assigned to the complexes of definite composition, and a linear correlation between the positions of the carbonyl group absorption and the total interaction energies of the complexes was found. The results of the spectral analysis of the NMF-MeOH mixtures were compared to those we obtained previously for similar binary systems, i.e., mixtures of methanol and formamide (FA) or N,N-dimethylformamide (DMF). It was shown that the factor analysis applied to the infrared spectra is an effective method for distinguishing molecular complexes with different polarizations of component molecules and allows for the detection of even weak intermolecular interactions and low-concentration species. Combined with the difference-spectra method, factor analysis provides a comprehensive picture of intermolecular interactions in binary mixtures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp911530d | DOI Listing |
Langmuir
January 2025
Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2BX, United Kingdom.
Engine deposits can reduce performance and increase emissions, particularly for modern direct-injection fuel delivery systems. Surfactants known as deposit control additives (DCAs) adsorb and self-assemble on the surface of deposit precursors to keep them suspended in the fuel. Here, we show how molecular simulations can be used to virtually screen the ability of surfactants to bind to polyaromatic hydrocarbons, comprising a major class of carbonaceous deposits.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary.
Accurate rovibrational molecular models are employed to gain insight in high-resolution into the collective effects and intermolecular processes arising when molecules in the gas phase interact with a resonant infrared (IR) radiation mode. An efficient theoretical approach is detailed, and numerical results are presented for the HCl, H2O, and CH4 molecules confined in an IR cavity. It is shown that by employing a rotationally resolved model for the molecules, revealing the various cavity-mediated interactions between the field-free molecular eigenstates, it is possible to obtain a detailed understanding of the physical processes governing the energy level structure, absorption spectra, and dynamic behavior of the confined systems.
View Article and Find Full Text PDFChemistry
January 2025
University of Hyderabad School of Chemistry, School of Chemistry, School of Chemistry, University of Hyderabad, 500046, Hyderabad, INDIA.
The amorphous/crystalline (A/C) assembly in molecular solids has a direct bearing on their attributes and applications, including mechanical, pharmaceutical, electronic and photophysical. A systematic analysis of the molecular features and interactions that determine the predilection towards the A, C or bi-stable A-C states is critical. This fundamental problem is addressed through an exhaustive investigation of a large family of alkoxyalkyl diaminodicyanoquinodimethanes (ROR'-DADQs); enhancement of their fluorescence from the solution, to the A, to the C state serves as an excellent signature of the phase preference and temporal stability.
View Article and Find Full Text PDFChem Asian J
January 2025
IISc: Indian Institute of Science, Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, 560012, Bangalore, INDIA.
In this study, we report the design and development of a stable fluorescent probe that is selectively localized in the cytosol of Hela cells. We designed two probes, 1 and 2, with D-π-A (carbazole (Cbz)-vinyl-naphthalimide (NPI)) and A-π-D-π-A (NPI-vinyl-Cbz-vinyl-NPI) architecture, respectively. Probes 1 and 2 exhibit broad photoluminescence (PL) spectra ranging from green (550 nm) to far-red (800 nm) in solutions and aggregated states.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China. Electronic address:
Zein-based nanoparticles (NPs) have attracted considerable attention as potential delivery systems for bioactive compounds. However, their application has been limited by poor stability and redispersibility. In this study, we addressed these challenges by fabricating zein nanocarriers using branching structural fructo-oligosaccharides (P-FOS) and sodium caseinate (NaCas) as costabilizers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!