Materials properties are ultimately determined by the nature of the interactions between the atoms that form the material. On surfaces, the site-specific spatial distribution of force and energy fields governs the phenomena encountered. This article reviews recent progress in the development of a measurement mode called three-dimensional atomic force microscopy (3D-AFM) that allows the dense, three-dimensional mapping of these surface fields with atomic resolution. Based on noncontact atomic force microscopy, 3D-AFM is able to provide more detailed information on surface properties than ever before, thanks to the simultaneous multi-channel acquisition of complementary spatial data such as local energy dissipation and tunneling currents. By illustrating the results of experiments performed on graphite and pentacene, we explain how 3D-AFM data acquisition works, what challenges have to be addressed in its realization, and what type of data can be extracted from the experiments. Finally, a multitude of potential applications are discussed, with special emphasis on chemical imaging, heterogeneous catalysis, and nanotribology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.200903909 | DOI Listing |
Langmuir
January 2025
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, P. R. China.
Understanding the interfacial interaction mechanisms between oil and minerals is of vital importance in the applications of petroleum production and environmental protection. In this work, the interactions of dodecane with mica and calcite in aqueous media were investigated by using the drop probe technique based on atomic force microscopy. For the dodecane-mica interactions, the electrical double layer (EDL) repulsion dominated in 10 mM NaCl solution, and a higher pH facilitated the detachment of dodecane.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
School of Medicine, Shanghai University, Shanghai, 200444, China.
Biochips are widely applied to manipulate the geometrical morphology of stem cells in recent years. Patterned antenna-like pseudopodia are also probed to explore the influence of pseudopodia formation on gene delivery and expression on biochips. However, how the antenna-like pseudopodia affect gene transfection is unsettled and the underlying trafficking mechanism of exogenous genes in engineered single cells is not announced.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Philipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Str. 4, 35032 Marburg, Germany.
Acenes are an important class of polycyclic aromatic hydrocarbons that have gained considerable attention from chemists, physicists, and material scientists, due to their exceptional potential for organic electronics. They serve as an ideal platform for studying the physical and chemical properties of sp carbon frameworks in the one-dimensional limit and also provide a fertile playground to explore magnetism in graphenic nanostructures due to their zigzag edge topology. While higher acenes up to tridecacene have been successfully generated by means of on-surface synthesis, it is imperative to extend their synthesis toward even longer homologues to comprehensively understand the evolution of their electronic ground state.
View Article and Find Full Text PDFArch Oral Biol
January 2025
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China. Electronic address:
Objectives: The present study aimed to explore the inhibitory effect of taxifolin (TAX) on Streptococcus mutans (S. mutans) in vitro and evaluated the anti-caries efficacy of TAX in vivo.
Design: The anti-microbial and anti-biofilm properties of TAX were examined on the S.
Adv Colloid Interface Sci
January 2025
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada. Electronic address:
Biopolymers derived from natural resources are highly abundant, biodegradable, and biocompatible, making them promising candidates to replace non-renewable fossil fuels and mitigate environmental and health impacts. Nano-fibrous biopolymers possessing advantages of biopolymers entangle with each other through inter-/intra-molecular interactions, serving as ideal building blocks for gel construction. These biopolymer nanofibers often synergize with other nano-building blocks to enhance gels with desirable functions and eco-friendliness across various applications in biomedical, environmental, and energy sectors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!