Synthesis of TiO(2) nanoframe and the prototype of a nanoframe solar cell.

Nanotechnology

Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.

Published: May 2010

Nanoframes containing 20 nm diameter TiO(2) nanowire arrays were synthesized with polymer templates via cathodic sol-gel deposition followed by 450 degrees C sintering. Raman spectra indicated that they are composed of pure anatase TiO(2). The nanowire array inside the nanoframe was confirmed to be single crystalline by high resolution TEM. Dye-sensitized solar cells based on this nanoframe were fabricated and the effects of the top cover in the nanoframe, which is the only difference between nanoframe cells and nanowire cells, were investigated. The results show that the top cover does not prevent the I( - ) and I(3)( - ) ions underneath from diffusing freely in the electrolyte and causes no deterioration of the cell performance. The nanoframe cell is a promising device in which nanowire arrays are strengthened and the effective internal surface area has the potentiality to be increased without sacrificing the advantages of nanowire cells compared to nanoparticle cells.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/21/18/185303DOI Listing

Publication Analysis

Top Keywords

tio2 nanowire
8
nanowire arrays
8
top cover
8
nanowire cells
8
nanoframe
7
nanowire
5
cells
5
synthesis tio2
4
tio2 nanoframe
4
nanoframe prototype
4

Similar Publications

Enhanced Photocatalytic Oxidative Coupling of Methane over Metal-Loaded TiO Nanowires.

Molecules

January 2025

College of Computer Science and Cyber Security (Pilot Software College), Chengdu University of Technology, Chengdu 610059, China.

The photocatalytic oxidative coupling of methane (OCM) on metal-loaded one-dimensional TiO nanowires (TiO NWs) was performed. With metal loading, the electric and optical properties of TiO NWs were adjusted, contributing to the improvement of the activity and selectivity of the OCM reaction. In the photocatalytic OCM reaction, the 1.

View Article and Find Full Text PDF

Ferroelectric polarization is considered to be an effective strategy to improve the oxygen evolution reaction (OER) of photoelectrocatalysis. The primary challenge is to clarify how the polarization field controls the OER dynamic pathway at a molecular level. Here, electrochemical fingerprint tests were used, together with theoretical calculations, to systematically investigate the free energy change in oxo and hydroxyl intermediates on TiO-BaTiO core-shell nanowires (BTO@TiO) upon polarization in different pH environments.

View Article and Find Full Text PDF

Highly flexible free-standing bacterial cellulose-based filter membrane with tunable wettability for high-performance water purification.

Int J Biol Macromol

December 2024

Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China. Electronic address:

Water purification has always been a critical yet challenging issue. In this study, an organic-inorganic composite membrane was developed using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized bacterial cellulose (BC) nanofibers and hydroxyapatite nanowires (HAPNW) with tunable wettability for advanced membrane separation applications. The resulting free-standing TEMPO-BC/HAPNW filter membrane exhibited strong mechanical strength, high flexibility, exceptional deformability, and a high pure water flux of up to 800 L·m·h due to its porous architecture and inherent hydrophilicity.

View Article and Find Full Text PDF

Glutathione (GSH) is a bioactive tripeptide with important physiological functions in animals, plants, and microorganisms. GSH participates in various biochemical reactions in vivo and is known for its antioxidant, anti-allergy, and detoxification properties. This study introduces an innovative photoelectrochemical (PEC) method for GSH detection, leveraging a fluorine-doped tin oxide (FTO) electrode enhanced by TiO nanoflowers and graphitic carbon nitride quantum dots (g-CNQDs).

View Article and Find Full Text PDF

In recent years, extensive research on noble metal-TiO nanocomposites has demonstrated their crucial role in various applications such as water splitting, self-cleaning, CO reduction, and wastewater treatment. The structure of the noble metal-TiO nanocomposites is critical in determining their photocatalytic properties. Numerous studies in the literature describe the preparation of these nanocomposites with various shapes and sizes to achieve tunable photocatalytic performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!