A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel neural-network model for deriving standard 12-lead ECGs from serial three-lead ECGs: application to self-care. | LitMetric

A novel neural-network model for deriving standard 12-lead ECGs from serial three-lead ECGs: application to self-care.

IEEE Trans Inf Technol Biomed

Department of Methodologies of Information Processing in Cardiology, Institut National des Sciences Appliquées (INSA-Lyon), Institut National de la Santé et de la Recherche Médicale (INSERM), France.

Published: May 2010

Synthesis of the 12-lead ECG has been investigated in the past decade as a method to improve patient monitoring in situations where the acquisition of the 12-lead ECG is cumbersome and time consuming. This paper presents and assesses a novel approach for deriving 12-lead ECGs from a pseudoorthogonal three-lead subset via generic and patient-specific nonlinear reconstruction methods based on the use of artificial neural-networks (ANNs) committees. We train and test the ANN on a set of serial ECGs from 120 cardiac inpatients from the intensive care unit of the Cardiology Hospital of Lyon. We then assess the similarity between the synthesized ECGs and the original ECGs at the quantitative level in comparison with generic and patient-specific multiple-regression-based methods. The ANN achieved accurate reconstruction of the 12-lead ECGs of the study population using both generic and patient-specific ANN transforms, showing significant improvements over generic (p -value < or = 0.05) and patient-specific ( p-value < or = 0.01) multiple-linear-regression-based models. Consequently, our neural-network-based approach has proven to be sufficiently accurate to be deployed in home care as well as in ambulatory situations to synthesize a standard 12-lead ECG from a reduced lead-set ECG recording.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TITB.2010.2047754DOI Listing

Publication Analysis

Top Keywords

12-lead ecgs
12
12-lead ecg
12
generic patient-specific
12
standard 12-lead
8
ecgs
7
12-lead
6
novel neural-network
4
neural-network model
4
model deriving
4
deriving standard
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!