Liquid chromatography-tandem mass spectrometry analysis of metabolites in rats after administration of prenylflavonoids from Epimediums.

J Chromatogr B Analyt Technol Biomed Life Sci

The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China.

Published: May 2010

The metabolites in rats after administration of icariside II, icariin, epimedin C and extracts of four Epimedium species were investigated. Feces, bile, plasma and urine samples were detected comprehensively using HPLC-ESI-MS(n) method. The structures of metabolites were identified on the basis of their characteristic fragmentations in MS(n) experiments. Totally, 54 metabolites were identified in these biosamples. Specific hydrolysis of 7-O glucosides in gut lumen and glucuronic acid conjugation in liver were considered as the main physiologic processes of prenylflavonoids. Icariside II and anhydroicaritin were the major intermediate products in forming of mono- and di-glucuronic acid conjugations in vivo. In general, this study revealed the possible metabolite profiles of prenylflavonoids in rats, and might aid the clinical use of different Epimedium species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2010.03.023DOI Listing

Publication Analysis

Top Keywords

metabolites rats
8
rats administration
8
epimedium species
8
metabolites identified
8
liquid chromatography-tandem
4
chromatography-tandem mass
4
mass spectrometry
4
spectrometry analysis
4
metabolites
4
analysis metabolites
4

Similar Publications

Hyperoxaluria, including primary and secondary hyperoxaluria, is a disorder characterized by increased urinary oxalate excretion and could lead to recurrent calcium oxalate kidney stones, nephrocalcinosis and eventually end stage renal disease. For secondary hyperoxaluria, high dietary oxalate (HDOx) or its precursors intake is a key reason. Recently, accumulated studies highlight the important role of gut microbiota in the regulation of oxalate homeostasis.

View Article and Find Full Text PDF

Objectives: Hepatocellular carcinoma (HCC) represents the third-most prevalent cancer in humans worldwide. The current study's objective is to search for the potentiality of H. Wendl () leaf extract in a nanoemulsion (NE) form in enhancing radiotherapy against HCC induced in rats using diethylnitrosamine (DEN).

View Article and Find Full Text PDF

Background: Bear bile powder (BBP), a unique animal-derived medicine with anti-inflammatory and antioxidant effects, is used in Shexiang Tongxin dropping pills (STDP), which is applied to treat cardiovascular diseases, including acute myocardial infarction (AMI). The efficacy and compatibility mechanisms of action of BBP in STDP against cardiovascular diseases remain unclear. This study aimed to investigate the compatibility effects of BBP in STDP in rats with AMI.

View Article and Find Full Text PDF

Gentisic acid protects Sprague-Dawley rats from myocardial infarction through reversing electrocardiographical, biochemical and histopathological abnormalities.

Biochem Biophys Res Commun

January 2025

Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, KPK, Pakistan. Electronic address:

Gentisic acid (GA), a cytochrome P450 metabolite of the antiplatelet drug aspirin, exhibits smooth muscle relaxant, antiatherogenic, and antioxidant activities. It also has a protective role in hypertrophic heart failure, suggesting its role in the management of myocardial infarction (MI). This study aimed to explore the protective activity of GA in isoproterenol (ISO)-induced MI in Sprague-Dawley (SD) rats in-vivo, followed by mechanistic investigation ex-vivo.

View Article and Find Full Text PDF

Revisiting the Metabolism of Donepezil in Rats Using Non-Targeted Metabolomics and Molecular Networking.

Pharmaceutics

January 2025

BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.

: Although donepezil, a reversible acetylcholinesterase inhibitor, has been in use since 1996, its metabolic characteristics remain poorly characterized. Therefore, this study aims to investigate the in vivo metabolism of donepezil using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) based on a molecular networking (MN) approach integrated with a non-targeted metabolomics approach. : After the oral administration of donepezil (30 mg/kg) in rats, urine, feces, and liver samples were collected for LC-HRMS analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!