The ultraviolet-B (UV-B) portion of sunlight has received much attention in the last three decades, because radiation from this spectral region increases due to the stratospheric ozone depletion, which results from increases of chlorofluorocarbons in the atmosphere. Plant responses to UV-B exposure vary greatly and the interpretation of and comparison between studies is hindered, mainly by the contrasting experimental conditions used and interactive factors such as low light levels and possible artifacts due to the artificial experimental conditions. It seems likely that increases in solar UV-B radiation of the magnitude anticipated under current stratospheric ozone projections will not significantly inhibit photosynthesis and cause DNA damage in plants. This is in part due to the well-evolved protection mechanisms present in most plant species. One of the significant plant responses to UV-B is changes in foliar secondary chemistry, which could be translated into significant effects at higher trophic levels through plant-herbivore interactions and decomposition. Enhanced UV-B radiation due to stratospheric ozone depletion could also cause morphological changes that would affect competitive interactions, especially if contrasting UV-B sensitivity exists among the competitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1744-7909.2010.00939.x | DOI Listing |
Nat Commun
January 2025
National Institute of Water and Atmospheric Research (NIWA), 301 Evans Bay Parade, Wellington, 6021, New Zealand.
Hydroxyl (OH) is the atmosphere's main oxidant removing most pollutants including methane. Its short lifetime prevents large-scale direct observational quantification. Abundances inferred using anthropogenic trace gas measurements and models yield conflicting trend estimates.
View Article and Find Full Text PDFNat Commun
December 2024
Earth Commons, Georgetown University, Washington, DC, USA.
Observationally-derived emissions of ozone depleting substances must be scrutinized to maintain the progress made by the Montreal Protocol in protecting the stratospheric ozone layer. Recent observations of three chlorofluorocarbons (CFCs), CFC-113, CFC-114, and CFC-115, suggest that emissions of these compounds have not decreased as expected given global reporting of their production. These emissions have been associated with hydrofluorocarbon (HFC) production, which can require CFCs as feedstocks or generate CFCs as by-products, yet emissions from these pathways have not been rigorously quantified.
View Article and Find Full Text PDFACS Earth Space Chem
December 2024
Department of Chemistry, University of Colorado Boulder Boulder, Colorado 80309, United States.
Iodine in the atmosphere destroys ozone and can nucleate particles by formation of iodic acid, HIO. Recent field observations suggest iodate recycles from particles sustaining significant gas-phase IO radical concentrations (0.06 pptv) in aged stratospheric air, and in elevated dust plumes.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain.
Photodissociation of the CH2Cl radical is investigated by using high-level multireference configuration interaction ab initio methods, including the spin-orbit coupling. All possible fragmentation pathways, namely, CH2Cl + hν → CH2 + Cl, HCCl + H, and CCl + H2, have been analyzed. The potential-energy curves of the ground and several excited electronic states along the corresponding dissociating bond distance of each pathway have been calculated.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
Iron zeolites are promising candidates for mitigating nitrous oxide (NO), a potent greenhouse gas and contributor to stratospheric ozone destruction. However, the atomic-level mechanisms by which different iron species, including isolated sites, clusters, and particles, participate in NO decomposition in the presence of CO still remain poorly understood, which hinders the application of the reaction in practical technology. Herein, through experiments and density functional theory (DFT) calculations, we identified that isolated iron sites were active for NO activation to generate adsorbed O* species, which readily reacted with CO following the Eley-Rideal (E-R) mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!