HS (heparan sulfate) is synthesized by HS co-polymerases encoded by the EXT1 and EXT2 genes (exostosin 1 and 2), which are known as causative genes for hereditary multiple exostoses, a dominantly inherited genetic disorder characterized by multiple cartilaginous tumours. It has been thought that the hetero-oligomeric EXT1-EXT2 complex is the biologically relevant form of the polymerase and that targeted deletion of either EXT1 or EXT2 leads to a complete lack of HS synthesis. In the present paper we show, unexpectedly, that two distinct cell lines defective in EXT1 expression indeed produce small but significant amounts of HS chains. The HS chains produced without the aid of EXT1 were shorter than HS chains formed in concert with EXT1 and EXT2. In addition, biosynthesis of HS in EXT1-defective cells was notably blocked by knockdown of either EXT2 or EXTL2 (EXT-like), but not of EXTL3. Then, to examine the roles of EXTL2 in the biosynthesis of HS in EXT1-deficient cells, we focused on the GlcNAc (N-aetylglucosamine) transferase activity of EXTL2, which is involved in the initiation of HS chains by transferring the first GlcNAc to the linkage region. Although EXT2 alone synthesized no heparan polymers on the synthetic linkage region analogue GlcUAbeta1-3Galbeta1-O-C2H4NH-benzyloxycarbonyl, marked polymerization by EXT2 alone was demonstrated on GlcNAcalpha1-4GlcUAbeta1-3Galbeta1-O-C2H4N-benzyloxycarbonyl (where GlcUA is glucuronic acid and Gal is galactose), which was generated by transferring a GlcNAc residue using recombinant EXTL2 on to GlcUAbeta1-3Galbeta1-O-C2H4NH-benzyloxycarbonyl. These findings indicate that the transfer of the first GlcNAc residue to the linkage region by EXTL2 is critically required for the biosynthesis of HS in cells deficient in EXT1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BJ20100101 | DOI Listing |
Oncogene
December 2024
Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, P. R. China.
Hereditary multiple exostoses (HME) is an autosomal dominant skeletal disorder primarily linked with mutations in Exostosin-1 (EXT1) and Exostosin-2 (EXT2) genes. However, not all HME cases can be explained by these mutations, and its pathogenic mechanisms are not fully understood. Herein, utilizing whole-exome sequencing and genetic screening with a family trio design, we identify two novel rare mutations co-segregating with HME in a Chinese family, including a nonsense mutation (c.
View Article and Find Full Text PDFMol Biotechnol
November 2024
Key Laboratory of Medical Biotechnology and Translational Medicine (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, China.
Hereditary multiple exostoses (HME) is an autosomal dominant skeletal disease. Genetic linkage analyses have identified that mutations in the exostosin glycosyltransferase (EXT)1 and EXT2 genes are linked to HME pathogenesis, with EXT1 mutation being the most frequent. The aim of this study was to generate a mice model with Ext1 gene editing to simulate human EXT1 mutation and investigate the genetic pathogenicity of Ext1 through phenotypic analyses.
View Article and Find Full Text PDFGenes (Basel)
September 2024
Department of Rare Skeletal Disorders, IRCCS Istituto Ortopedico Rizzoli, 40131 Bologna, Italy.
J Curr Ophthalmol
August 2024
Department of Orthopaedics, Satyawadi Raja Harishchandra Hospital, Narela, Delhi, India.
Purpose: To study rare ocular findings in a rare case of hereditary multiple exostoses (HME) and to study HME in one family.
Methods: HME is an autosomal dominant genetic disease characterized by the presence of multiple exostoses (osteochondromas). It is caused by mutations in two genes: exostosin-1 (EXT1) and exostosin-2 (EXT2).
Kidney Int
November 2024
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA. Electronic address:
Membranous nephropathy (MN) results from accumulation of antigen-antibody immune complexes along the subepithelial region of the glomerular basement membranes. Over the last years, 13 target antigens have been discovered and include PLA2R, THSD7A, EXT1 and EXT2, NELL1, SEMA3B, NCAM1, CNTN1, HTRA1, FAT1, PCDH7, NTNG1, PCSK6 and NDNF, accounting for 80-90% of MN antigens. MN associated with many of these antigens have distinctive clinicopathologic findings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!