Amyotrophic lateral sclerosis (ALS) is a universally fatal neurodegenerative disease of the human motor system. Aetiological mechanisms implicated in the development of ALS have been linked to the glutamatergic neurotransmitter system, with destruction of motor neurons triggered through excessive activation of glutamate receptors at the synaptic cleft. This 'excitotoxicity' theory of ALS gave rise to the development of therapeutic approaches and ultimately clinical trials involving riluzole, initially thought to act solely as an inhibitor of glutamate release. Subsequent effects of riluzole have been postulated to include indirect antagonism of glutamate receptors, in addition to inactivation of neuronal voltage-gated Na+ channels. Riluzole remains the only disease-modifying therapy available to patients with ALS. Despite having been clinically available since the mid-1990 s, the in vivo pharmacological targets of riluzole have been poorly defined. An improved understanding concerning the potential neuroprotective mechanisms of riluzole may unearth pathophysiological processes that mediate neurodegeneration in ALS. The present review summarises the known chemical and pharmacological properties of riluzole. The failure of other putative neuroprotective therapies to demonstrate positive treatment outcomes in this intractable disease will be reviewed. Finally, the hypothesis that Na+ conductances may be involved in the processes of neuronal and axonal degeneration in ALS will be explored.

Download full-text PDF

Source
http://dx.doi.org/10.2174/092986710791163939DOI Listing

Publication Analysis

Top Keywords

amyotrophic lateral
8
lateral sclerosis
8
glutamate receptors
8
riluzole
7
als
6
riluzole neuroprotection
4
neuroprotection amyotrophic
4
sclerosis amyotrophic
4
sclerosis als
4
als universally
4

Similar Publications

Structural insights into the role of reduced cysteine residues in SOD1 amyloid filament formation.

Proc Natl Acad Sci U S A

February 2025

Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea.

The formation of superoxide dismutase 1 (SOD1) filaments has been implicated in amyotrophic lateral sclerosis (ALS). Although the disulfide bond formed between Cys57 and Cys146 in the active state has been well studied, the role of the reduced cysteine residues, Cys6 and Cys111, in SOD1 filament formation remains unclear. In this study, we investigated the role of reduced cysteine residues by determining and comparing cryoelectron microscopy (cryo-EM) structures of wild-type (WT) and C6A/C111A SOD1 filaments under thiol-based reducing and metal-depriving conditions, starting with protein samples possessing enzymatic activity.

View Article and Find Full Text PDF

Spinocerebellar ataxias (SCAs) are dominantly inherited diseases that lead to neurodegeneration in the cerebellum and other parts of the nervous system. This review examines the progress that has been made in SCA2 from its initial clinical description to discovery of DNA CAG-repeat expansions in the gene. repeat alleles cover the range from recessive and dominant mendelian alleles to risk alleles for amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

Background/aims: Oro-pharyngeal dysfunction has been reported in Amyotrophic Lateral Sclerosis (ALS). We aimed to assess ALS patients upper gastrointestinal (GI) motor activity and GI symptoms according to bulbar and spinal onset and severity of ALS.

Methods: ALS bulbar (B) and spinal (S) patients with ALS Functional Rating Scale (ALSFRS-r) ≥35, bulbar sub-score ≥10, and Forced Vital Capacity (FVC) >50%, underwent to: Fiberoptic Endoscopic Evaluation of Swallowing (FEES); esophageal manometry; gastric emptying; Rome symptom questionnaire.

View Article and Find Full Text PDF

Roles of C/EBPβ/AEP in Neurodegenerative Diseases.

Curr Top Med Chem

January 2025

Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China.

In recent years, an increasing number of studies have shown that increased activation of aspartic endopeptidases (AEPs) is a common symptom in neurodegenerative diseases (NDDs). AEP cleaves amyloid precursor protein (APP), tau (microtubule-associated protein tau), α- synuclein (α-syn), SET (a 39-KDa phosphoprotein widely expressed in various tissues and localizes predominantly in the nucleus), and TAR DNA-binding protein 43 (TDP-43), and promotes their aggregation, contributing to Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) pathogenesis. Abundant evidence supports the notion that CCAAT/enhancer-binding protein β (C/EBPβ)/AEP may play an important role in NDDs.

View Article and Find Full Text PDF

The three-dimensional structure of proteins, achieved through the folding of the nascent polypeptide chain in vivo, is largely facilitated by molecular chaperones, which are crucial for determining protein functionality. In addition to aiding in the folding process, chaperones target misfolded proteins for degradation, acting as a quality control system within the cell. Defective protein folding has been implicated in a wide range of clinical conditions, including neurodegenerative and metabolic disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!