A procedure is described for the determination of alpha-methyldopa (MD) [L-3-(3,4-dihydroxyphenyl)-2-methylalanine], its metabolite and catecholamines in the urine and plasma of patients undergoing MD therapy, by high-performance liquid chromatography with dual working electrode coulometric detection. An efficient sample preparation procedure is presented for the isolation of endogenous MD, its metabolite and catecholamines from plasma or urine. After deproteinization of a plasma sample with methanol containing 2% of 0.5 M perchloric acid and dilution of a urine sample (1:200), MD, dihydroxyphenylacetic acid (DOPAC), 3-O-methylmethyldopa (3-OMMD) and homovanillic acid (HVA) were separated with a Supelcosil LC-18 column. Catecholamines were extracted from the supernatant of deproteinized plasma or from urine by ion exchange on a Sephadex CM-25 column and subsequent adsorption on alumina. The use of the same mobile phase for the concurrent assay of MD, its metabolite and catecholamines increased considerably the efficiency of sample separation. Recoveries were close to 100% for MD, DOPAC, 3-OMMD and HVA and 70% for catecholamines. The effects of various experimental parameters related to mobile phase composition on chromatographic performance are reported. The purity of the eluted compounds was tested by recording both the first detector response (oxidation current) and the second detector response (reduction current). The ratio of the detector responses yielded a chemical reversibility ratio for the detected compound. A number of applications such as monitoring data from patients under MD therapy are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0021-9673(01)96000-5DOI Listing

Publication Analysis

Top Keywords

metabolite catecholamines
12
high-performance liquid
8
urine plasma
8
plasma urine
8
mobile phase
8
detector response
8
urine
5
plasma
5
catecholamines
5
liquid chromatographic
4

Similar Publications

This paper summarizes the main findings of a study which aimed to examine the electrochemical oxidation of homovanillic acid (HVA), the final metabolite of dopamine. A pencil graphite electrode (PGE) was used as working electrode and the measurements were performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The type and the composition of the graphite leads used as PGE, the pH of the supporting electrolyte, as well as the scan rates were optimized by CV.

View Article and Find Full Text PDF

Quantifying urinary catecholamines and metanephrines is essential for the clinical screening and diagnosis of neuroendocrine tumours. HPLC with electrochemical detection (HPLC-ECD) is commonly used for this type of analysis but requires extensive sample cleanup. Simple and rapid dilute-and-shoot LC-multiple-reaction monitoring (MRM)-MS assays have been developed for quantitating these analytes in urine but have not yet been validated according to the Clinical and Laboratory Standards Institute (CLSI) guidelines.

View Article and Find Full Text PDF

Blepharospasm (BSP) is a common focal movement disorder linked to the basal ganglia and plasma catecholamines (CAs). This study aimed to analyze clinical characteristics of BSP patients and explore the relationship with plasma CAs. Clinical characteristics, clinician-rated scales, and plasma CAs were recorded, including dopamine (DA), 3-methoxytyramine (3-MT), and the 3-MT/DA ratio.

View Article and Find Full Text PDF

1-Methylxanthine (1-MX) is the major metabolite of caffeine and paraxanthine and might contribute to their activity. 1-MX is an adenosine receptor antagonist and increases the release and survivability of neurotransmitters; however, no study has addressed the potential physiological effects of 1-MX ingestion. The aim of this study was to compare the effect of 1-MX on memory and related biomarkers in rats compared to control.

View Article and Find Full Text PDF

Metabolomic in severe traumatic brain injury: exploring primary, secondary injuries, diagnosis, and severity.

Crit Care

January 2025

Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.

Background: Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!