Direct aqueous injection with backflush thermal desorption for wastewater monitoring by online GC-MS.

Anal Bioanal Chem

BASF SE, Environmental Analytics and Water/Steam Monitoring, 67056 Ludwigshafen, Germany.

Published: June 2010

A gas chromatography-mass spectrometry system with a novel injector type, which is designed for direct aqueous injection of wastewater, is presented. The system is used for online monitoring of the influent of the wastewater treatment plant at BASF's main chemical production site in Ludwigshafen, Germany. The purpose of monitoring is to protect the biological treatment process and the receiving water body, the Rhine. The modular system is primarily based on commercial equipment, but utilizes a special injection system, which is connected to a Deans switch. The two-stage injector consists of a programmable temperature vaporizer (PTV) injector with a small volume insert for vaporization and a dual sorbent packed second PTV for analyte adsorption/desorption. The Deans switch allows a backflush/thermal desorption operation which enables the direct injection of filtered, crude wastewater. About 170 volatile and semivolatile compounds are calibrated with approximate detection limits of 1 mg/L, which are sufficient for the analysis of untreated wastewater. The quantitative results are transferred to a database which is connected to a process control system. If the wastewater does not meet the required specification, an alarm is generated and the wastewater is diverted into a storage basin. Special software programs and routines allow for reliable, unattended operation and remote instrument control. Data quality is automatically controlled in each run and through the daily analysis of quality control samples. The current design allows for analysis of volatile compounds, such as methanol, whereas an earlier injector setup restricted the range of analytes to less volatile compounds (of size C(4) or greater).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-010-3644-5DOI Listing

Publication Analysis

Top Keywords

direct aqueous
8
aqueous injection
8
deans switch
8
volatile compounds
8
wastewater
7
system
5
injection
4
injection backflush
4
backflush thermal
4
thermal desorption
4

Similar Publications

Directed assembly of abiotic catalysts onto biological redox protein frameworks is of interest as an approach for the synthesis of biohybrid catalysts that combine features of both synthetic and biological materials. In this report, we provide a multiscale characterization of the platinum nanoparticle (NP) hydrogen-evolving catalysts that are assembled by light-driven reductive precipitation of platinum from an aqueous salt solution onto the photosystem I protein (PSI), isolated from cyanobacteria as trimeric PSI. The resulting PSI-NP assemblies were analyzed using a combination of X-ray energy-dispersive spectroscopy (XEDS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), small-angle X-ray scattering (SAXS), and high-energy X-ray scattering with atomic pair distribution function (PDF) analyses.

View Article and Find Full Text PDF

Nano-Metal-Organic Frameworks Isolated in Mesoporous Structures.

Adv Mater

January 2025

School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China.

As an alternative to bulk counterparts, metal-organic framework (MOF) nanoparticles isolated within conductive mesoporous carbon matrices are of increasing interest for electrochemical applications. Although promising, a "clean" carbon surface is generally associated with poor compatibility and weak interactions with metal/ligand precursors, which leads to the growth of MOFs with inhomogeneous particle sizes on outer pore walls. Here, a general methodology for in situ synthesis of eight nanoMOF composites within mesochannels with high dispersity and stability are reported.

View Article and Find Full Text PDF

[Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].

Se Pu

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.

View Article and Find Full Text PDF

Cathodic corrosion is an electrochemical phenomenon that etches metals at moderately negative potentials. Although cathodic corrosion probably occurs by forming a metal-containing anion, such intermediate species have not yet been observed. Here, aiming to resolve this long-standing debate, our work provides such evidence through X-ray absorption spectroscopy.

View Article and Find Full Text PDF

Bifunctional lignin-based hydrogel membrane with enhanced structural stability for synergistic uranium uptake.

J Colloid Interface Sci

January 2025

College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300 PR China. Electronic address:

Developing biomass-based adsorbents with superior uranium uptake performance is imperative yet challenging for the sustainable development of nuclear energy. Herein, we constructed a novel lignin-based adsorbent (DLP@PAO) with dual functional groups and enhanced structural stability via ingenious integration of lignin and polyamidoxime. The two-step modification strategy was innovatively employed to phosphorylate lignin, significantly enhancing the phosphorylation efficiency and achieving an over eight-fold increase in the U(VI) uptake capacity of lignin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!