Background: Modeling of cellular functions on the basis of experimental observation is increasingly common in the field of cellular signaling. However, such modeling requires a large amount of quantitative data of signaling events with high spatio-temporal resolution. A novel technique which allows us to obtain such data is needed for systems biology of cellular signaling.
Methodology/principal Findings: We developed a fully automatable assay technique, termed quantitative image cytometry (QIC), which integrates a quantitative immunostaining technique and a high precision image-processing algorithm for cell identification. With the aid of an automated sample preparation system, this device can quantify protein expression, phosphorylation and localization with subcellular resolution at one-minute intervals. The signaling activities quantified by the assay system showed good correlation with, as well as comparable reproducibility to, western blot analysis. Taking advantage of the high spatio-temporal resolution, we investigated the signaling dynamics of the ERK pathway in PC12 cells.
Conclusions/significance: The QIC technique appears as a highly quantitative and versatile technique, which can be a convenient replacement for the most conventional techniques including western blot, flow cytometry and live cell imaging. Thus, the QIC technique can be a powerful tool for investigating the systems biology of cellular signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848603 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009955 | PLOS |
J Imaging Inform Med
January 2025
Monash Imaging, Monash Health, 246 Clayton Rd, Clayton, VIC, 3168, Australia.
We extend existing techniques by using generative adversarial network (GAN) models to reduce the appearance of cast shadows in radiographs across various age groups. We retrospectively collected 11,500 adult and paediatric wrist radiographs, evenly divided between those with and without casts. The test subset consisted of 750 radiographs with cast and 750 without cast.
View Article and Find Full Text PDFAcad Radiol
January 2025
Department of Radiology, Shengjing Hospital of China Medical University, China (Y.Y., T.W.). Electronic address:
Rationale And Objectives: Mixed ground-glass nodules (mGGNs) are highly malignant and common nonspecific lung imaging findings. This study aimed to explore whether combining quantitative and qualitative spectral dual-layer detector-based computed tomography (SDCT)-derived parameters with serological tumor abnormal proteins (TAPs) and thymidine kinase 1 (TK1) expression enhances invasive mGGN diagnostic efficacy and to develop a joint diagnostic model.
Materials And Methods: This prospective study included patients with mGGNs undergoing preoperative triple-phase contrast-enhanced SDCT with TAP and TK1 tests.
J Nucl Med
January 2025
Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California;
Nuclear cardiology offers a diverse range of imaging tools that provide valuable insights into myocardial perfusion, inflammation, metabolism, neuroregulation, thrombosis, and microcalcification. These techniques are crucial not only for diagnosing and managing cardiovascular conditions but also for gaining pathophysiologic insights. Surrogate biomarkers in nuclear cardiology, represented by detectable imaging changes, correlate with disease processes or therapeutic responses and can serve as endpoints in clinical trials when they demonstrate a clear link with these processes.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Ophthalmology Department, First Affiliated Hospital of GuangXi Medical University, Nanning, China.
Background: In recent years, with the rapid development of machine learning (ML), it has gained widespread attention from researchers in clinical practice. ML models appear to demonstrate promising accuracy in the diagnosis of complex diseases, as well as in predicting disease progression and prognosis. Some studies have applied it to ophthalmology, primarily for the diagnosis of pathologic myopia and high myopia-associated glaucoma, as well as for predicting the progression of high myopia.
View Article and Find Full Text PDFEur J Radiol
December 2024
Department of General Surgery, Peking University Third Hospital, Beijing, China. Electronic address:
Purpose: To investigate whether multiparametric quantitative diffusion weighted magnetic resonance imaging (DWI) can effectively predict the neoadjuvant therapy (NAT) response in borderline resectable pancreatic ductal adenocarcinoma (BRPC).
Methods: The clinicopathological data, including tumor size, location, and CA19-9 values, as well as DWI parameters(ADC, D, and f values) from 72 patients with BRPC, were analyzed. The differences and changes in these factors before and after NAT were compared to identify those most accurately reflect the response to NAT.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!