Epsilon Aurigae (epsilon Aur) is a visually bright, eclipsing binary star system with a period of 27.1 years. The cause of each 18-month-long eclipse has been a subject of controversy for nearly 190 years because the companion has hitherto been undetectable. The orbital elements imply that the opaque object has roughly the same mass as the visible component, which for much of the last century was thought to be an F-type supergiant star with a mass of approximately 15M[symbol:see text] (M[symbol:see text], mass of the Sun). The high mass-to-luminosity ratio of the hidden object was originally explained by supposing it to be a hyperextended infrared star or, later, a black hole with an accretion disk, although the preferred interpretation was as a disk of opaque material at a temperature of approximately 500 K, tilted to the line of sight and with a central opening. Recent work implies that the system consists of a low-mass (2.2M[symbol:see text]-3.3M[symbol:see text]) visible F-type star, with a disk at 550 K that enshrouds a single B5V-type star. Here we report interferometric images that show the eclipsing body moving in front of the F star. The body is an opaque disk and appears tilted as predicted. Adopting a mass of 5.9M[symbol:see text] for the B star, we derive a mass of approximately (3.6 +/- 0.7)M[symbol:see text] for the F star. The disk mass is dynamically negligible; we estimate it to contain approximately 0.07M[symbol:see text] (M[symbol:see text], mass of the Earth) if it consists purely of dust.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature08968DOI Listing

Publication Analysis

Top Keywords

epsilon aurigae
8
star
8
text] m[symbolsee
8
m[symbolsee text]
8
text] mass
8
star disk
8
text] star
8
mass
7
text]
7
disk
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!