Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nnano.2010.70 | DOI Listing |
J Phys Condens Matter
January 2025
Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China.
Newly-synthesized structure T (sT) hydrate show promising practical applications in hydrogen storage and transport, yet the properties remain poorly understood. Here, we develop a machine learning potential (MLP) of sT hydrogen hydrate derived from quantum-mechanical molecular dynamics simulations. Using this MLP forcefield, the structural, hydrogen diffusion, mechanical and thermal properties of sT hydrogen hydrate are extensively explored.
View Article and Find Full Text PDFPharmaceutics
December 2024
Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia.
Pathogen bacteria appear and survive on various surfaces made of steel or glass. The existence of these bacteria in different forms causes significant problems in healthcare facilities and society. Therefore, the surface engineering of highly potent antimicrobial coatings is highly important in the 21st century, a period that began with a series of epidemics.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Laboratoire De Physique de l'École Normale Supérieure, ENS, PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75005 Paris, France.
Sci Rep
January 2025
Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
Photosensitization has a wide range of applications in vastly distant fields. Three key components must be present at the same time to trigger the related photodynamic effect: light, the photosensitizer (PS) and oxygen. Irradiating the sensitizer leads to the formation of reactive oxygen species (ROS).
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.
Cold ions in traps are well-established, highly controllable systems with a wide variety of applications in quantum science, precision spectroscopy, clocks, and chemistry. Nanomechanical oscillators are used in advanced sensing applications and for exploring the border between classical and quantum physics. Here, we report on the implementation of a hybrid system combining a metallic nanowire with laser-cooled ions in a miniaturized ion trap.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!