Study Design: Biomechanics of normal vertebral segments adjacent to a degenerated segment in the cervical spine.
Objective: To test the hypothesis of higher motion changes in the segment immediately inferior to a degenerated segment.
Summary Of Background Data: Past research has shown how disc degeneration (DD) affects adjacent segments; however, these studies are conducted only on the lumbar spine or the experimental protocols used are characterized by the presence of degeneration in adjacent segments. The question arises as to how much of the degenerative effect in a particular segment is internal to degeneration at that segment and how much is caused by degeneration at adjacent segments. It would be clinically relevant to analyze biomechanical changes in adjacent segments in the cervical spine by considering DD at only one segment, where adjacent segments remain normal.
Methods: A poroelastic, 3-dimensional finite element model of a normal C3-T1 segment was validated and then used for the degenerative study. Two additional C3-T1 models were developed with moderate and severe degenerative C5-C6 disc grades. Disc geometry and tissue material properties were modified to simulate C5-C6 DD. Intersegmental rotational motions (C4-C5, C5-C6, and C6-C7) for the 3 C3-T1 models were computed under moment loads.
Results: With progressive C5-C6 DD, motion decreased at that segment. At adjacent segments, higher motion changes were observed mainly in flexion/extension. Inferior C6-C7 motion changes were higher than superior C4-C5 motion changes. The inferior C6-C7 motion was affected even when C5-C6 DD was moderate, and it was further affected by severe C5-C6 DD. The superior C4-C7 motion, however, was mostly affected by severe C5-C6 DD.
Conclusion: The hypothesis of higher motion changes in the normal C6-C7 segment immediately inferior to a degenerated C5-C6 segment was found to be true. Future experiments on multisegmental cervical spines are recommended to verify the current data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/BRS.0b013e3181bd419b | DOI Listing |
Osteoarthritis Cartilage
January 2025
Department of Radiology and Biomedical Imaging, University of California, San Francisco.
Objective: Knee-adjacent subcutaneous fat (kaSCF) has emerged as a potential biomarker and risk factor for OA progression. This study aims to develop an AI-based tool for the automatic segmentation of kaSCF thickness and evaluate the cross-sectional associations between kaSCF, cartilage thickness, MRI-based cartilage T relaxation time, knee pain, and muscle strength independent of BMI.
Design: Baseline 3.
Clin Oral Investig
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
Objectives: To develop a platform including a deep convolutional neural network (DCNN) for automatic segmentation of the maxillary sinus (MS) and adjacent structures, and automatic algorithms for measuring 3-dimensional (3D) clinical parameters.
Materials And Methods: 175 CBCTs containing 242 MS were used as the training, validating and testing datasets at the ratio of 7:1:2. The datasets contained healthy MS and MS with mild (2-4 mm), moderate (4-10 mm) and severe (10- mm) mucosal thickening.
Sensors (Basel)
January 2025
School of Biomedical Engineering, Tsinghua University, Shuang Qing Road, Beijing 100084, China.
Mastoidectomy is critical in acoustic neuroma surgery, where precise planning of the bone milling area is essential for surgical navigation. The complexity of representing the irregular volumetric area and the presence of high-risk structures (e.g.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Spinal Surgery, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing 100044, China.
: The aim of this study was to investigate the incidence of vertebral refractures following percutaneous kyphoplasty (PKP) and to explore risk factors for augmented vertebral refractures, thereby assisting spinal surgeons in clinical practice. : We analyzed the records of 495 patients with single-segment osteoporotic vertebral compression fractures (OVCFs) who were treated with single-entry PKP at our institution from March 2016 to August 2022. Univariate analysis, binary logistic regression, and ROC curve analysis were performed to determine potential risk factors, independent risk factors, and discrimination ability.
View Article and Find Full Text PDFEur Spine J
January 2025
Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
Purpose: This study aimed to compare the incidence of radiological adjacent segment disease (R-ASD) at L3/4 between patients with L4/5 degenerative spondylolisthesis (DS) who underwent L4/5 posterior lumbar interbody fusion (PLIF) and those who underwent microscopic bilateral decompression via a unilateral approach (MBDU) at L4/5. Our ultimate goal was to distinguish the course of natural lumbar degeneration from fusion-related degeneration while eliminating L4/5 decompression as a confounder.
Methods: Ninety patients with L4/5 DS who underwent L4/5 PLIF (n = 53) or MBDU (n = 37) and were followed for at least 5 years were retrospectively analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!