LL-37, the only member of the cathelicidin family of cationic host defence peptides in humans, has been shown to mediate multiple immunomodulatory effects and as such is thought to be an important component of innate immune responses. A growing body of evidence indicates that LL-37 affects lung mucosal responses to pathogens through altered regulation of cell migration, proliferation, wound healing and cell apoptosis. These functions are consistent with LL-37 playing a role in regulating lung epithelial inflammatory responses; however, that role has not been clearly defined. In this report we have demonstrated that host defence peptide LL-37 induced cytokine (IL-6) and chemokine (CXCL-1/GRO-alpha and CXCL-8/IL-8) release from human bronchial epithelial cells. It was demonstrated that LL-37-mediated IL-6 release was time and dose dependent and that LL-37 up-regulated this pleiotropic cytokine at the transcriptional level. Using specific inhibitors it was shown that NF-kappaB signaling led to the LL-37-stimulated production of IL-6. LL-37 stimulation of airway epithelial cells activated NF-kappaB signaling, as demonstrated by the phosphorylation and degradation of Ikappa-Balpha, and consequent nuclear translocation of p65 and p50 NF-kappaB subunits. Furthermore this host defence peptide augmented flagellin-mediated cytokine production, indicating that LL-37 likely modulates Toll-like receptor 5-mediated responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7312842 | PMC |
http://dx.doi.org/10.1159/000171533 | DOI Listing |
PLoS One
January 2025
Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
Guanylate binding proteins (GBPs) are large interferon-inducible GTPases, executing essential host defense activities against Toxoplasma gondii, an invasive intracellular apicomplexan protozoan parasite of global importance. T. gondii establishes a parasitophorous vacuole (PV) which shields the parasite from the host's intracellular defense mechanisms.
View Article and Find Full Text PDFMol Plant Pathol
January 2025
Faculty of Bioscience Engineering, Ghent University, Gent, Belgium.
In the coevolutionary process between plant pathogens and hosts, pathogen effectors, primarily proteinaceous, engage in interactions with host proteins, such as plant transcription factors (TFs), during the infection process. This review delves into the intricate interplay between TFs and effectors, a key aspect in the prolonged and complex battle between plants and pathogens. Effectors strategically manipulate TFs using diverse tactics.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China.
Plants activate defense machinery when infested by herbivorous insects but avoid such costs in the absence of herbivory. However, the key signaling pathway regulators underlying such flexibility and the mechanisms that insects exploit these components to disarm plant defense systems remain elusive. Here, it is reported that immune repressor 14-3-3e in rice Oryza sativa (OsGF14e) regulates immune homeostasis.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Biotechnological Control of Pests Laboratory, Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Valencia, 46100, Spain.
The Spodoptera genus is defined as the pest-rich genus because it contains some of the most destructive lepidopteran crop pests, characterized by a wide host range. During feeding, the caterpillars release small amounts of oral secretion (OS) onto the wounded leaves. This secretion contains herbivore-induced molecular patterns (HAMPs) that activate the plant defense response, as well as effectors that may inhibit or diminish the plant's anti-herbivory response.
View Article and Find Full Text PDFMicrob Genom
January 2025
School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Subang Jaya, Malaysia.
In recent decades, has surpassed as the leading cause of shigellosis, possibly due to species-specific differences in their transcriptomic responses. This study used dual RNA sequencing to analyse the transcriptomic responses of and the two species at early (10 minutes) and late (24 hours) stages of infection. While the nematode defence response was downregulated during both infections, only infection by led to downregulation of sphingolipid metabolism, cadmium ion response and xenobiotic response in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!