Localization and gene expression of human beta-defensin 9 at the human ocular surface epithelium.

Invest Ophthalmol Vis Sci

Larry A. Donoso Laboratory for Eye Research, Division of Ophthalmology and Visual Sciences, The University of Nottingham, Queens Medical Centre, University Hospital, Nottingham, United Kingdom.

Published: September 2010

Purpose: Antimicrobial peptides (AMPs) are multifunctional host defense molecules. Human beta-defensin 9 (HBD9) has previously been shown to be downregulated during ocular surface (OS) infection or inflammation. Here, the authors aimed to study localization of HBD9 protein in different OS regions and to determine the role of Toll-like receptors (TLRs), nucleotide oligomerization domain (NOD)-like receptors, and proinflammatory cytokines in HBD9 expression.

Methods: Immunolocalization of HBD9 protein was carried out on the normal human OS regions (cornea, limbus, and conjunctiva). Quantitative PCR analysis of HBD9 mRNA was performed in SV40-transformed human corneal epithelial cells (hCECs) treated for different durations with synthetic pathogen-associated molecular patterns (PAMPs) and recombinant cytokines.

Results: HBD9 protein was constitutively expressed on OS epithelia. Corneal and limbal epithelia and corneal stroma demonstrated modest levels of HBD9, whereas conjunctival epithelium demonstrated high levels of HBD9 protein. TLR02, TLR03, TLR04, and TLR05 were shown to modulate HBD9 mRNA in hCECs. Similarly, NOD2 and IL-1beta were also shown to alter HBD9 in a time-dependent manner. In response to infection-related PAMPs and inflammatory cytokines, an initial increase in HBD9 mRNA levels was observed, followed by a significant downregulation.

Conclusions: This is the first demonstration of HBD9 protein expression at different OS regions. The authors also determined the role of various innate immune receptors in HBD9 mRNA modulation. Further understanding of the signaling mechanisms involved in the initial response of HBD9 to infection or inflammation is likely to indicate future therapeutic directions with this AMP.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.10-5334DOI Listing

Publication Analysis

Top Keywords

hbd9 protein
20
hbd9 mrna
16
hbd9
14
human beta-defensin
8
ocular surface
8
infection inflammation
8
epithelia corneal
8
levels hbd9
8
human
5
protein
5

Similar Publications

SARS-CoV-2 variants of concern (VOC) have been associated with increased viral transmission and disease severity. We investigated the mechanisms of pathogenesis caused by variants using a host blood transcriptome profiling approach. We analysed transcriptional signatures of COVID-19 patients comparing those infected with wildtype (wt), alpha, delta or omicron strains seeking insights into infection in Asymptomatic cases.

View Article and Find Full Text PDF

Background: Fungal keratitis (FK) is the leading cause of unilateral blindness in the developing world. Antimicrobial peptides (AMPs) have been shown to play an important role on human ocular surface (OS) during bacterial, viral and protozoan infections. In this study, our aim was to profile a spectrum of AMPs in corneal tissue from patients with FK during the active pase of infection and after healing.

View Article and Find Full Text PDF

Thymic stromal lymphopoietin (TSLP) is an interleukin 7 (IL-7)-like four helix bundle cytokine that plays diverse roles in the regulation of immune responses. In fungal infection, pattern recognition receptors (PRRs), including the cell surface Toll-like receptors (TLRs) and cytoplasmic NOD-like receptors, recognize pathogen-associated molecular patterns to initiate downstream signal cascades to active immune responses. Our previous studies reported that, in vitro human cornea epithelium cells represented a novel target of TSLP and that TSLP/TSLPR/STAT5 signaling played an important role in the response to Aspergillus fumigatus challenge.

View Article and Find Full Text PDF

: To investigate the role of innate immunity in ocular rosacea. : Thirty-two patients with ocular rosacea patients (group-1) and 28 healthy volunteers (group-2) who served as controls were enrolled in the study. Tear function parameters were assessed, conjunctival impression cytology was performed and tear samples were collected.

View Article and Find Full Text PDF

Purpose: Human β-defensins (HBDs) are an important part of the innate immune host defense at the ocular surface. Unlike other defensins, expression of HBD9 at the ocular surface is reduced during microbial infection, but activation of toll-like receptor 2 (TLR2) in corneal epithelial cells has been shown to up-regulate HBD9. Our purpose was to test the hypothesis that TLR2 has a key role in the signalling pathway(s) involved in the overexpression or underexpression of HBD9, and accordingly, different pathogens would induce a different expression pattern of HBD9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!