Autosomal dominant polycystic kidney disease is characterized by the loss-of-function of a signaling complex involving polycystin-1 and polycystin-2 (TRPP2, an ion channel of the TRP superfamily), resulting in a disturbance in intracellular Ca(2+) signaling. Here, we identified the molecular determinants of the interaction between TRPP2 and the inositol 1,4,5-trisphosphate receptor (IP(3)R), an intracellular Ca(2+) channel in the endoplasmic reticulum. Glutathione S-transferase pulldown experiments combined with mutational analysis led to the identification of an acidic cluster in the C-terminal cytoplasmic tail of TRPP2 and a cluster of positively charged residues in the N-terminal ligand-binding domain of the IP(3)R as directly responsible for the interaction. To investigate the functional relevance of TRPP2 in the endoplasmic reticulum, we re-introduced the protein in TRPP2(-/-) mouse renal epithelial cells using an adenoviral expression system. The presence of TRPP2 resulted in an increased agonist-induced intracellular Ca(2+) release in intact cells and IP(3)-induced Ca(2+) release in permeabilized cells. Using pathological mutants of TRPP2, R740X and D509V, and competing peptides, we demonstrated that TRPP2 amplified the Ca(2+) signal by a local Ca(2+)-induced Ca(2+)-release mechanism, which only occurred in the presence of the TRPP2-IP(3)R interaction, and not via altered IP(3)R channel activity. Moreover, our results indicate that this interaction was instrumental in the formation of Ca(2+) microdomains necessary for initiating Ca(2+)-induced Ca(2+) release. The data strongly suggest that defects in this mechanism may account for the altered Ca(2+) signaling associated with pathological TRPP2 mutations and therefore contribute to the development of autosomal dominant polycystic kidney disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881802 | PMC |
http://dx.doi.org/10.1074/jbc.M109.090662 | DOI Listing |
Chem Soc Rev
January 2025
Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
Intracellular metal ions play essential roles in multiple physiological processes, including catalytic action, diverse cellular processes, intracellular signaling, and electron transfer. It is crucial to maintain intracellular metal ion homeostasis which is achieved by the subtle balance of storage and release of metal ions intracellularly along with the influx and efflux of metal ions at the interface of the cell membrane. Dysregulation of intracellular metal ions has been identified as a key mechanism in triggering programmed cell death (PCD).
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
High transductive loss at tissue injury sites impedes repair. The high dissipation characteristics in the electromechanical conversion of piezoelectric biomaterials pose a challenge. Therefore, supramolecular engineering and microfluidic technology is utilized to introduce slide-ring polyrotaxane and conductive polypyrrole to construct stress-electric coupling hydrogel microspheres.
View Article and Find Full Text PDFContact (Thousand Oaks)
December 2024
Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
Membrane contact sites (MCSs) are specialized regions where two or more organelle membranes come into close apposition, typically separated by only 10-30 nm, while remaining distinct and unfused. These sites play crucial roles in cellular homeostasis, signaling, and metabolism. This review focuses on ion channels, transporters, and receptors localized to MCSs, with particular emphasis on those associated with the plasma membrane and endoplasmic reticulum (ER).
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
Over the past few decades, microtubules have been targeted by various anticancer drugs, including paclitaxel and eribulin. Despite their promising effects, the development of drug resistance remains a challenge. We aimed to define a novel cell death mechanism that targets microtubules using eribulin and to assess its potential in overcoming eribulin resistance.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China. Electronic address:
This research developed a magnetic relaxation switching (MRS) biosensor based on hydrogel sol-gel transition and the CRISPR/Cas12a system (MRS-CRISPR) to detect Salmonella. Herein, the alkaline phosphatase (ALP) labeled with streptavidin was captured by the biotin-modified DNA on magnetic nanoparticles (MNPs) surface, which generated an acidic environment via enzymatic reaction to release Ca and induced the transformation of alginate sol to hydrogels. In contrast, Salmonella activated the trans-cleavage activity of the CRISPR/Cas12a system, interrupting the capture of ALP and the subsequent sol-gel transition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!