We have investigated the relaxation dynamics of the higher excited states of the uranyl ion in aqueous and methanolic solutions following photoexcitation to the S(1)((1)Phi(g)) state using 400 nm light. Although the time-resolved spectra are significantly different in these two solvents, the temporal dynamics studied in the entire wavelength region clearly suggest the involvement of three excited state processes in both solvents. The S(1)((1)Phi(g)) state undergoes ultrafast intersystem crossing (tau(ISC) approximately <100 fs) to the higher vibrational levels of the T(2)((3)Delta(g)) state, followed by the intramolecular vibrational relaxation (IVR) process in the later electronic state (tau(IVR) approximately 0.85 and 1 ps in aqueous and methanolic solutions, respectively). Subsequently, the T(2)((3)Delta(g)) state undergoes an internal conversion (IC) process (tau(IC) approximately l.6 and 4.5 ps in aqueous and methanol solutions, respectively) to the long-lived T(1)((3)Phi(g)) state, which is responsible for the luminescent properties of the uranyl ion. In neat methanol, because of stronger interaction between the excited triplet, T(1)((3)Phi(g)), state and the solvent via solvent to uranyl charge transfer, the U(VI) ion undergoes partial reduction to U(V) and the energy level of this state possibly lies lower than that of (UO(2)(2+))*, which is the transient species existing in aqueous solution, and hence increasing the energy gap between the T(2) and T(1) states in methanol solution. These facts possibly explain different spectral characteristics of the transient species produced in methanol and aqueous solutions as well as the longer lifetime of the IC process in methanol solution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp912039rDOI Listing

Publication Analysis

Top Keywords

excited states
8
states uranyl
8
uranyl ion
8
s11phig state
8
ultrafast dynamics
4
dynamics excited
4
ion solutions
4
solutions investigated
4
investigated relaxation
4
relaxation dynamics
4

Similar Publications

Luminescent lanthanide compounds stand out for their distinctive characteristics including narrow emission bands, substantial Stokes shifts, high quantum yields, and unique luminescent colors. However, Ln is highly susceptible to vibrational quenching from X-H (X = O/N) high-energy oscillators in the embedded organic antenna, resulting in significant nonradiative energy dissipation of the D excited states of Ln. Herein, we introduce a strategy based on supramolecular interactions to modulate the nonradiative transitions in a new Zn-Tb heterometallic compound, [ZnTb(HL)(NO)Cl]·2CHCN·HO (), based on a phenyl-substituted pyrazolinone-modified salicylamide-imide ligand ().

View Article and Find Full Text PDF

N-heterocyclic carbene (NHC)-protected gold nanoclusters display high stability and high photoluminescence, making them well-suited for fluorescence imaging and photodynamic therapeutic applications. We report herein the synthesis of two bisNHC-protected Au nanoclusters with π-extended aromatic systems. Depending on the position of the π-extended aromatic system, changes to the structure of the ligand shell in the cluster are observed, with the ability to correlate increases in rigidity with increases in fluorescence quantum yield.

View Article and Find Full Text PDF

Heteroarene-Fused Benzo[b]arsoles: Structure, Photophysical Properties, and Effects of the Bridging Element.

Chem Asian J

January 2025

Kyoto Institute of Technology: Kyoto Kogei Sen'i Daigaku, Faculty of Molecular Chemistry and Engineering, Goshokaido-cho, Matsugasaki, Sakyo-ku, 606-0962, Kyoto, JAPAN.

Heteroarene-fused heteroles have attracted considerable attention owing to their unique electronic and photophysical properties. The bridging element plays a crucial role in determining the electronic characteristics of the resulting π-conjugated molecules. In this study, we synthesized a series of heteroarene-fused benzo[b]arsoles and investigated their structures and photophysical properties.

View Article and Find Full Text PDF

Nanoscale Manipulation of Single-Molecule Conformational Transition through Vibrational Excitation.

J Am Chem Soc

January 2025

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0309, United States.

Controlling molecular actions on demand is a critical step toward developing single-molecule functional devices. Such control can be achieved by manipulating the interactions between individual molecules and their nanoscale environment. In this study, we demonstrate the conformational transition of a single pyrrolidine molecule adsorbed on a Cu(100) surface, driven by vibrational excitation through tunneling electrons using scanning tunneling microscopy.

View Article and Find Full Text PDF

Spectral dispersion in low-field nuclear magnetic resonance (NMR) can significantly affect NMR spectral analysis, particularly when studying complex mixtures like metabolic profiling of biological samples. To address signal superposition in these spectra, we employed spectral editing with selective excitation pulses, proving it to be a suitable approach. Optimal control pulses were implemented in low-field NMR and demonstrated their capability to selectively excite and eliminate specific amino acids, such as phenylalanine and taurine, either individually or simultaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!