Study of titanium oxide sol-gel condensation using small angle X-ray scattering.

J Phys Chem B

Laboratoire de Physique de l'Etat Condensé, UMR CNRS 6087, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.

Published: April 2010

Transparent gels prepared from an acid solution of TiOCl(2) in N,N-dimethylformamide (DMF) and water have been studied by small-angle X-ray scattering (SAXS). The sol-gel transformation of the titanium inorganic polymer was studied as a function of chemical composition of the sol and of the annealing time. Quantitative information was obtained by modeling the SAXS data with the Burford and Beaucage models. From the fits to the data, the radius of gyration of the primary particles, the so-called building blocks, the size xi of the homogeneous objects forming a fractal network in the gel, and the fractal dimension of the gel were obtained. We found fractal dimensions varying between D(f) = 1.75 and 2.2 and a radius of gyration of the building blocks equal to R(g) = 0.46 nm, which remained almost constant for all studied samples. The analysis of the homogeneous domain size xi as a function of the annealing time shows the existence of an incubation time preceding the rapid growth of the aggregates at high titanium concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp9086305DOI Listing

Publication Analysis

Top Keywords

x-ray scattering
8
annealing time
8
radius gyration
8
building blocks
8
gel fractal
8
study titanium
4
titanium oxide
4
oxide sol-gel
4
sol-gel condensation
4
condensation small
4

Similar Publications

Extraction of cellulose nanocrystals from date seeds using transition metal complex-assisted hydrochloric acid hydrolysis.

Int J Biol Macromol

January 2025

Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates. Electronic address:

In this study, the role of a transition metal complex in improving hydrolysis efficiency during nanocellulose production was analysed. Cellulose nanocrystals (CNCs) were extracted from date seeds by incorporating a copper metal complex during HCl hydrolysis. In contrast to traditional HCl hydrolysis at moderate conditions, which yielded only microcrystalline cellulose (MCC), this approach resulted in the extraction of CNCs with a 10 % improved yield compared to MCC.

View Article and Find Full Text PDF

Multiscale X-ray scattering elucidates activation and deactivation of oxide-derived copper electrocatalysts for CO reduction.

Nat Commun

January 2025

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.

Electrochemical reduction of carbon dioxide (CO) into sustainable fuels and base chemicals requires precise control over and understanding of activity, selectivity and stability descriptors of the electrocatalyst under operation. Identification of the active phase under working conditions, but also deactivation factors after prolonged operation, are of the utmost importance to further improve electrocatalysts for electrochemical CO conversion. Here, we present a multiscale in situ investigation of activation and deactivation pathways of oxide-derived copper electrocatalysts under CO reduction conditions.

View Article and Find Full Text PDF

Background: A significant proportion of false positive recalls of mammography-screened women is due to benign breast cysts and simple fibroadenomas. These lesions appear mammographically as smooth-shaped dense masses and require the recalling of women for a breast ultrasound to obtain complementary imaging information. They can be identified safely by ultrasound with no need for further assessment or treatment.

View Article and Find Full Text PDF

Current study presents an advanced method for improving the visualization of subsurface blood vessels using laser speckle contrast imaging (LSCI), enhanced through principal component analysis (PCA) filtering. By combining LSCI and laser speckle entropy imaging with PCA filtering, the method effectively separates static and dynamic components of the speckle signal, significantly improving the accuracy of blood flow assessments, even in the presence of static scattering layers located above and below the vessel. Experiments conducted on optical phantoms, with the vessel depths ranging from 0.

View Article and Find Full Text PDF

This study aims to use superparamagnetic iron oxide nanoparticles (SPIONs), specifically magnetite (FeO), to deliver deflazacort (DFZ) and ibuprofen (IBU) to Duchenne muscular dystrophy-affected (DMD) mouse muscles using an external magnetic field. The SPIONs are synthesized by the co-precipitation method, and their surfaces are functionalized with L-cysteine to anchor the drugs, considering that the cysteine on the surface of the SPIONs in the solid state dimerizes to form the cystine molecule, creating the FeO-(Cys)-DFZ and FeO-(Cys)-IBU systems for tests. The FeO nanoparticles (NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and magnetic measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!