Proteomics-based analysis of novel genes involved in response toward soybean mosaic virus infection.

Mol Biol Rep

National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.

Published: January 2011

Soybean mosaic virus (SMV) is one of the most serious virus diseases of soybean. However, little is known about the molecular basis of the soybean defense mechanism against this pathogen. We identified differentially expressed proteins in soybean leaves infected with SMV by proteomic approaches. Twenty-eight protein spots that showed ≥2-fold difference in intensity were identified between mock-inoculated and SMV-infected samples. Among them, 16 spots were upregulated and 12 spots were downregulated in the SMV-infected samples. We recovered 25 of the 28 differentially expressed proteins from two-dimensional electrophoresis (2-DE) gels. These spots were identified as 16 different proteins by Matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and tandem TOF/TOF MS, and were potentially involved in protein degradation, defense signal transfer, reactive oxygen, cell wall reinforcement, and energy and metabolism regulation. Gene expression analysis of 13 genes by quantitative real time polymerase chain reaction (qRT-PCR) showed that metabolism genes and photosynthesis genes were downregulated at all time points. One energy gene was downregulated, whereas another energy gene was upregulated at five of the six time points. The other interesting genes that were altered by SMV infection showed changes in transcription over time. This is the first extensive application of proteomics to the SMV-soybean interaction. These results contribute to a better understanding of the molecular basis of soybean's responses to SMV.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-010-0135-xDOI Listing

Publication Analysis

Top Keywords

soybean mosaic
8
mosaic virus
8
molecular basis
8
differentially expressed
8
expressed proteins
8
smv-infected samples
8
time points
8
energy gene
8
genes
5
soybean
5

Similar Publications

The soybean mosaic disease-caused by the (SMV)-significantly impacts soybean quality and yield. Among its various strains, SMV-SC7 is prevalent in China. Therefore, rapid and accurate diagnosis is deemed critical to mitigate the spread of SMV-SC7.

View Article and Find Full Text PDF

In this context, we reported for the first time the design and development of a self-assembled nanoantiviral pesticide based on the star polycation (SPc) and the broad-spectrum fungicide/antiviral agent seboctylamine for field control of (SMV), a highly destructive plant virus in soybean crops. The SPc could self-assemble with seboctylamine through hydrogen bonds and van der Waals forces, and the complexation with SPc reduced the particle size of seboctylamine to form a spherical seboctylamine/SPc complex. In addition, the contact angle of seboctylamine decreased, and its retention increased with the aid of SPc, indicating excellent wetting properties and strong leaf surface adhesion performance.

View Article and Find Full Text PDF

Increasing atmospheric CO levels have a variety of effects that can influence plant responses to microbial pathogens. However, these responses are varied, and it is challenging to predict how elevated CO (eCO) will affect a particular plant-pathogen interaction. We investigated how eCO may influence disease development and responses to diverse pathogens in the major oilseed crop, soybean.

View Article and Find Full Text PDF

Transgenic soybean (Glycine max) plants expressing mutant potyviral coat proteins that disrupt virion assembly exhibited non-strain-specific resistance against soybean mosaic virus.

View Article and Find Full Text PDF

[WRKY33A positively regulates disease resistance in soybean ()].

Sheng Wu Gong Cheng Xue Bao

October 2024

College of Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.

The WRKY transcription factor gene family is a plant-specific transcription factor that plays important roles defense responses. Studies in model plant demonstrated that WRKYs function downstream of mitogen activated-protein kinase (MAPK) signaling cascade and participate in defense responses through activating the expression of defense-related genes. However, the roles of WRKYs in defense responses have not been previously investigated in paleopolyploidy soybean.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!