A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Atomistic modeling of apatite-collagen composites from molecular dynamics simulations extended to hyperspace. | LitMetric

Atomistic modeling of apatite-collagen composites from molecular dynamics simulations extended to hyperspace.

J Mol Model

Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01087 Dresden, Germany.

Published: January 2011

The preparation of atomistic models of apatite-collagen composite mimicking enamel at length scales in the range of 1-10 nanometers is outlined. This bio-composite is characterized by a peculiar interplay of the collagen triplehelix and the apatite crystal structure. Structural coherence is however only obtained after drastic rearrangements, namely the depletion of protein-protein hydrogen bonds and the incorporation of calcium triangles which are stabilized by salt-bridges with the collagen molecule. Starting from an isolated collagen triple helix and a single-crystalline apatite structure, a composite model is obtained by gradually merging the two components via an additional (hyperspace) coordinate. This approach allows smooth structural relaxation of both components whilst avoiding singularities in potential energy due to atomic overlap.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-010-0707-7DOI Listing

Publication Analysis

Top Keywords

atomistic modeling
4
modeling apatite-collagen
4
apatite-collagen composites
4
composites molecular
4
molecular dynamics
4
dynamics simulations
4
simulations extended
4
extended hyperspace
4
hyperspace preparation
4
preparation atomistic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!